化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3545-3552.DOI: 10.11949/0438-1157.20190168
向静1(),王宏1,2(
),朱恂1,2,丁玉栋1,2,廖强1,2,陈蓉1,2
收稿日期:
2019-03-01
修回日期:
2019-06-19
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
王宏
作者简介:
向静(1994—),女,硕士研究生,基金资助:
Jing XIANG1(),Hong WANG1,2(
),Xun ZHU1,2,Yudong DING1,2,Qiang LIAO1,2,Rong CHEN1,2
Received:
2019-03-01
Revised:
2019-06-19
Online:
2019-09-05
Published:
2019-09-05
Contact:
Hong WANG
摘要:
结合改进的模板法和ZnO水热生长法在环氧树脂基底上得到了荷叶仿生超疏水结构,该方法工艺流程简单、制作成本低廉,可以实现微观结构的快速复刻。研究了模板法对天然表面复刻的适用范围,其对荷叶和水稻等具有突起类微观结构表面的复刻效果良好,并研究了水热法中ZnO生长液浓度对纳米结构的影响。同时为了研究不同微观结构对表面疏水性能的影响,制作了光滑表面、纳米结构表面和仿荷叶微米结构表面,并测试了表面的疏水性能。结果表明,粗糙结构能够提高低能表面的疏水性能,微纳复合结构更有利于表面形成超疏水;增加表面的粗糙结构能够增加液滴与固体接触面上的气-液占比,进而使得液滴在表面的接触角增加。
中图分类号:
向静, 王宏, 朱恂, 丁玉栋, 廖强, 陈蓉. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552.
Jing XIANG, Hong WANG, Xun ZHU, Yudong DING, Qiang LIAO, Rong CHEN. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J]. CIESC Journal, 2019, 70(9): 3545-3552.
图3 仿荷叶微米结构、仿荷叶微纳复合结构和原始材料干荷叶的接触角与滚动角
Fig.3 Contact angles and sliding angels of lotus microstructure replica, lotus hierarchical structure replica and dry lotus leaf
图4 荷叶表面微纳复合结构ESEM图[(a)~(c)][32]和仿荷叶微纳复合结构SEM图[(d)~(f)]
Fig.4 ESEM micrographs of lotus leaf hierarchical structure[(a)—(c)][32] and SEM micrographs of lotus hierarchical structure replica[(d)—(f)]
Concentration of ZnO / (mol/L) | ZnO nanohair morphology | |
---|---|---|
Average diameter / nm | Average length / nm | |
0.01 | 25 | 200 |
0.025 | 30 | 350 |
0.04 | 45 | 400 |
0.055 | 75 | 650 |
0.07 | 139 | 780 |
0.095 | 347 | 890 |
表1 不同ZnO生长液浓度及其对应的ZnO纳米线形貌
Table 1 Concentration of ZnO grow liquid and relative ZnO nanohair morphology
Concentration of ZnO / (mol/L) | ZnO nanohair morphology | |
---|---|---|
Average diameter / nm | Average length / nm | |
0.01 | 25 | 200 |
0.025 | 30 | 350 |
0.04 | 45 | 400 |
0.055 | 75 | 650 |
0.07 | 139 | 780 |
0.095 | 347 | 890 |
图7 ZnO生长液浓度与仿荷叶微纳复合结构表面的接触角和滚动角的关系
Fig.7 Relationship of concentration of ZnO grow liquid and lotus hierarchical structure replicas’ contact angle and sliding angle
1 | Neinhuis C , Barthlott W . Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-77. |
2 | Autumn K , Liang Y A , Hsieh S T , et al . Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405(6787): 681-685. |
3 | Bechert D W , Bruse M , Hage W , et al . Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften, 2000, 87(4): 157-171. |
4 | Xue F G , Lei J . Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
5 | Suter R , Rosenberg O , Loeb S , et al . Locomotion on the water surface: propulsive mechanisms of the fisher spider[J]. Journal of Experimental Biology, 1997, 200(Pt 19): 2523. |
6 | Vukusic P , Sambles J R , Lawrence C R , et al . Structural color: now you see it—now you don’t[J]. Nature, 2001, 410(6824): 36. |
7 | Zi J , Yu X D , Li Y Z , et al . Coloration strategies in peacock feathers[J]. Proceedings of the National Academy of Sciences, 2003, 100(22): 12576-12578. |
8 | Xia Y N X , Whitesides G M . Soft lithography[J]. Encyclopedia of Nanotechnology, 2003, 37(28): 153-184. |
9 | Tania B , Lisa B P . Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices[J]. International Journal of Nanomedicine, 2006, 1(4): 483-495. |
10 | Chong M A S , Yue B Z , Han G , et al . Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications[J]. Applied Physics Letters, 2006, 89(23): 233104. |
11 | Yuan Z , Chen H , Tang J , et al . A novel preparation of polystyrene film with a superhydrophobic surface using a template method[J]. Journal of Physics D Applied Physics, 2007, 40(11): 3485. |
12 | Green D W , Lee K H , Watson J A , et al . High quality bioreplication of intricate nanostructures from a fragile gecko skin surface with bactericidal properties[J]. Scientific Reports, 2017, 7: 41023. |
13 | Pulsifer D P , Lakhtakia A . Background and survey of bioreplication techniques[J]. Bioinspiration & Biomimetics, 2011, 6(3): 031001. |
14 | Gao J , Liu Y L , Xu H P , et al . Mimicking biological structured surfaces by phase-separation micromolding[J]. Langmuir, 2009, 25(8): 4365-4369. |
15 | Jaggessar A , Shahali H , Mathew A , et al . Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants[J]. Journal of Nanobiotechnology, 2017, 15(1): 64. |
16 | Sun M H , Luo C X , Xu L P , et al . Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19): 8978. |
17 | Barthlott W , Mail M , Neinhuis C . Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications[J]. Philos. Trans. A Math. Phys. Eng. Sci., 2016, 374(2073): 1-41. |
18 | Koch K , Schulte A J , Fischer A , et al . A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces[J]. Bioinspiration & Biomimetics, 2008, 3(4): 10. |
19 | Lei W , Gong Q H , Zhan S H , et al . Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28(35): 7729-7735. |
20 | Gao X F , Yan X , Yao X , et al . The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2010, 19(17): 2213-2217. |
21 | Mohamed A M A , Abdullah A M , Younan N A . Corrosion behavior of superhydrophobic surfaces: a review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765. |
22 | 曹墨源, 巴特尔, 柏浩 . 仿生特殊浸润性界面在化学工程与工艺中的应用[J]. 化工学报, 2018, 69(11): 4592-4604. |
Cao M Y , Ba T E , Bai H . Applications of bio-inspired surfaces possessing special wettability in chemical engineering and technology[J]. CIESC Journal, 2018, 69(11): 4592-4904. | |
23 | Antonini C , Innocenti M , Horn T , et al . Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science & Technology, 2011, 67(1): 58-67. |
24 | 马强, 吴晓敏 . 表面特性对结霜和融霜排液的影响[J]. 化工学报, 2017, 68(S1): 90-95. |
Ma Q , Wu X M . Effect of surface wettability on frosting, defrosting and drainage[J]. CIESC Journal, 2017, 68(S1): 90-95. | |
25 | 丁云飞, 殷帅, 廖云丹, 等 . 纳微结构疏水表面结霜过程及抑霜特性[J]. 化工学报, 2012, 63(10): 3213-3219. |
Ding Y F , Yin S , Liao Y D , et al . Frosting mechanism and suppression on nano/micro-structured hydrophobic surfaces[J]. CIESC Journal, 2012, 63(10): 3213-3219. | |
26 | 吴延鹏, 郭占闯 . 超疏水表面防附尘性能实验分析[J]. 化工学报, 2018, 69(S2): 365-372. |
Wu Y P , Guo Z C . Experimental analysis of anti-dust property on superhydrophobic surfaces[J]. CIESC Journal, 2018, 69(S2): 365-372. | |
27 | Nishino T , Meguro M , Nakamae K , et al . The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323. |
28 | Peng C , Chen Z , Tiwari M K . All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17(4): 355-360. |
29 | Sun M , Du Y , Xu H Z , et al . Fabrication and wettability of ZnO nanorod array[J]. Journal of Materials Science & Technology, 2009, 25(1): 53-57. |
30 | Feng X J , Feng L , Jin M H , et al . Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. Journal of the American Chemical Society, 2004, 126(1): 62-63. |
31 | Greene L E , Yuhas B D , Matt L , et al . Solution-grown zinc oxide nanowires[J]. Cheminform, 2010, 45(19): 7535-7543. |
32 | Bandelow B . Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion[J]. Soft Matter., 2009, 5(7): 1386-1393. |
33 | Schulte A J , Koch K , Spaeth M , et al . Biomimetic replicas: transfer of complex architectures with different optical properties from plant surfaces onto technical materials[J]. Acta Biomaterialia, 2009, 5(6): 1848-1854. |
34 | 江雷, 冯琳 . 仿生智能纳米界面材料[M]. 北京: 化学工业出版社, 2007. |
Jiang L , Feng L . Biomimetic Intelligent Nano-interface Materials[M]. Beijing: Chemical Industry Press, 2007. | |
35 | Yang S , Ju J , Qiu Y , et al . Peanut leaf inspired multifunctional surfaces[J]. Small, 2014, 10(2): 294-299. |
36 | Song J , Xu W , Lu Y . One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates[J]. Journal of Materials Science, . 2011, 47(1): 162-168. |
37 | Song X , Zhai J , Wang Y , et al . Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry B, 2005, 109(9): 4048-4052. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[10] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[11] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[12] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[13] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[14] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[15] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 867
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 984
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||