化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3050-3057.DOI: 10.11949/0438-1157.20190136
收稿日期:
2019-02-20
修回日期:
2019-05-16
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
豆宝娟
作者简介:
赵晨晨(1994—),女,硕士研究生,<email>847558718@qq.com</email>
基金资助:
Chenchen ZHAO(),Qinglan HAO,Ningna YAN,Deyu YANG,Yafei HUANG,Baojuan DOU(
)
Received:
2019-02-20
Revised:
2019-05-16
Online:
2019-08-05
Published:
2019-08-05
Contact:
Baojuan DOU
摘要:
在内径4 mm的微型反应器内对两种活性不同的Cu-Ce-Zr基催化剂进行甲苯自持燃烧的贫燃极限研究和热量计算。研究结果表明,活性高的CuCe0.75Zr0.25Ox-BC催化剂的贫燃极限小于活性低的CuCe0.75Zr0.25/TiO2催化剂的贫燃极限,当流量为200 ml/min时,其当量比?值最小,为0.024。混合气在催化剂表面的停留时间随混合气流量的增大而缩短,使得催化自持燃烧的壁温高温区向催化剂床层后端移动,且壁温高温区温度随催化剂活性的增高而降低。在散热率高达91.9%的情况下,甲苯仍可维持稳定的自持燃烧状态。同时结合微管反应实验结果和理论计算,在有效降低飞温上限对反应器和催化剂的影响下实现了甲苯在固定床反应器中的自持燃烧。
中图分类号:
赵晨晨, 郝庆兰, 闫宁娜, 杨德宇, 黄亚飞, 豆宝娟. Cu-Ce-Zr基催化剂上甲苯自持燃烧贫燃极限研究[J]. 化工学报, 2019, 70(8): 3050-3057.
Chenchen ZHAO, Qinglan HAO, Ningna YAN, Deyu YANG, Yafei HUANG, Baojuan DOU. Study on lean-combustion limit of toluene self-sustained combustion on Cu-Ce-Zr based catalysts[J]. CIESC Journal, 2019, 70(8): 3050-3057.
图2 CuCZ/T催化剂上甲苯自持燃烧贫燃极限实验过程(实心符号代表自持燃烧,空心符号代表未实现自持燃烧)
Fig.2 Experiment process of lean-combustion limits for toluene self-sustained combustion over CuCZ/T catalyst (filled/open symbols illustrate successful/failed self-sustained combustion)
图3 CuCZ-BC和CuCZ/T催化剂在不同流量下的甲苯催化自持燃烧贫燃极限
Fig.3 Lean-combustion limits of toluene catalytic self-sustaining combustion over CuCZ-BC and CuCZ/T catalysts
图4 不同气体流量下的甲苯自持燃烧壁温分布和反应实况(内图)
Fig.4 Wall temperature distributions of toluene self-sustained combustion with different flow rates and diagram of real-time reaction(inset)
催化剂 | 流量/(ml/min) | ||||
---|---|---|---|---|---|
150 | 200 | 250 | 300 | 350 | |
CuCZ-BC | 406.9 | 397.3 | 409.8 | 432.2 | 462.4 |
CuCZ/T | 410.8 | 409.4 | 412.0 | 486.8 | 511.6 |
表1 不同混合气流量下甲苯催化自持燃烧时的微管反应器的平均壁温
Table 1 Mean wall temperature of micro-tube for toluene catalytic self-sustained combustion under different flow rate/K
催化剂 | 流量/(ml/min) | ||||
---|---|---|---|---|---|
150 | 200 | 250 | 300 | 350 | |
CuCZ-BC | 406.9 | 397.3 | 409.8 | 432.2 | 462.4 |
CuCZ/T | 410.8 | 409.4 | 412.0 | 486.8 | 511.6 |
1 | BijjulaK, VlachosD G. Catalytic ignition and autothermal combustion of JP-8 and its surrogates over a Pt/γ-Al2O3 catalyst[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1801-1807. |
2 | BinF, WeiX L, LiT, et al. Self-sustained catalytic combustion of carbon monoxide ignited by dielectric barrier discharge[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4193-4200. |
3 | ChenJ J, YanL F, SongW Y, et al. Effect of heat and mass transfer on the combustion stability in catalytic micro-combustor[J]. Applied Thermal Engineering, 2018, 131: 750-765. |
4 | 李军伟, 钟北京. 甲烷/氧气在微细直管内的燃烧和散热研究[J]. 燃料科学与技术, 2008, 14(3): 199-204. |
LiJ W, ZhongB J. Investigation on methane/oxygen combustion and heat loss in micro-tube[J]. Journal of Combustion Science and Technology, 2008, 14(3): 199-204. | |
5 | WangY F, YangW J, ZhouJ H, et al. Heterogeneous reaction characteristics and their effects on homogeneous combustion of methane/air mixture in micro channels(Ⅰ): Thermal analysis[J]. Fuel, 2018, 234: 20-29. |
6 | WangY F, YangW J, ZhouJ H, et al. Heterogeneous reaction characteristics and its effects on homogeneous combustion of methane/air mixture in microchannels(Ⅱ): Chemical analysis[J]. Fuel, 2019, 235: 923-932. |
7 | YanY F, WuG G, HuangW P, et al. Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones[J]. Energy, 2019, 170: 403-410. |
8 | 中华人民共和国生态环境部. 关于征求《制药工业大气污染物排放标准(征求意见稿)》国家环境保护标准意见的函[EB/OL]. [2019-06-04]. . |
Ministry of Ecology and Environment of the People s Republic of China. Letter on soliciting opinions on national environmental protection standards for “Emission standard of air pollutions for pharmaceutical industry (draft)” [EB/OL]. [2019-06-04]. . | |
9 | 中华人民共和国生态环境部,关于印发《“十三五”挥发性有机物污染防治工作方案》的通知[EB/OL]. [2019-06-04]. . |
Ministry of Ecology and Environment of the People s Republic of China. Notice on the issuance of “13th five-year plan for the prevention and control of volatile organic compounds” [EB/OL]. [2019-06-04]. . | |
10 | YangW J, WangY F, ZhouJ H, et al. Catalytic self-sustaining combustion of the alkanes with Pt/ZSM-5 packed bed in a microscale tube[J]. Chemical Engineering Science, 2017, 158: 30-36. |
11 | ScarpaA, PironeR, RussoG, et al. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor[J]. Combustion and Flame, 2009, 156: 947-953. |
12 | SpecchiaS, TacchinoS, SpecchiaV. Facing the catalytic combustion of CH4/H2 mixtures into monoliths[J]. Chemical Engineering Journal, 2011, 167(2): 622-633. |
13 | YanY F, PanW L, ZhangL, et al. Numerical study of the geometrical parameters on CH4/air premixed combustion in heat recirculation micro-combustor[J]. Fuel, 2015, 159: 45-51. |
14 | SpadacciniC M, ZhangX, CadouC P, et al. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators A: Physical, 2003, 103(1/2): 219-224. |
15 | ZhangY C, PanJ F, TangA K, et al. Effects of inlet parameters on combustion characteristics of premixed CH4/air in micro channels[J]. Journal of the Energy Institute, 2019, 92(3): 824-834. |
16 | BinF, WeiX L, LiB, et al. Self-sustained combustion of carbon monoxide promoted by the Cu-Ce/ZSM-5 catalyst in CO/O2/N2 atmosphere[J]. Applied Catalysis B: Environmental, 2015, 162: 282-288. |
17 | ZhaoC C, HaoQ L, ZhangQ, et al. Catalytic self-sustained combustion of toluene and reaction pathway over CuxMn1-xCe0.75Zr0.25/TiO2 catalysts[J]. Applied Catalysis A: General, 2019, 56: 66-74. |
18 | BinF, KangR N, WeiX L, et al. Self-sustained combustion of carbon monoxide over CuCe0.75Zr0.25Oδ catalyst: stability operation and reaction mechanism[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5507-5515. |
19 | 杨青, 郝庆兰, 闫宁娜, 等. 溶胶凝胶法由细菌纤维素制备CuCe0.75Zr0.25Ox复合氧化物及其低温催化降解甲苯性能[J]. 燃料化学学报, 2017, 45(11): 1401-1408. |
YangQ, HaoQ L, YanN N, et al. Preparation of CuCe0.75Zr0.25Oxcomposite by bacterial cellulose promoted sol-gel method and its catalytic performance in the toluene degradation at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1401-1408. | |
20 | DouB J, LiS M, LiuD L, et al. Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO2 catalysts[J]. RSC Advances, 2016, 6(59): 53852-53859. |
21 | 王业峰, 周俊虎, 赵庆辰, 等. 甲烷与正丁烷微小尺寸催化燃烧性能比较[J]. 化工学报, 2017, 68(3): 896-902. |
WangY F, ZhouJ H, ZhaoQ C, et al. Comparison of catalytic combustion of methane and n-butane in microtude[J]. CIESC Journal, 2017, 68(3): 896-902. | |
22 | MuhammadS K, ShaikhA R, MohammadM H. Catalytic oxidation of volatile organic compounds (VOCs) — a review[J]. Atmospheric Environment, 2016, 140: 117-137. |
23 | XinY X, WangH, LawC K. Kinetics of catalytic oxidation of methane, ethane and propane over palladium oxide[J]. Combustion and Flame, 2014, 161(4): 1048-1054. |
24 | 张薇薇. 甲苯在SBA-15上的吸附与催化性能的研究[D]. 大连: 大连理工大学, 2011. |
ZhangW W. Study on adsorption/catalytic properties of toluene over SBA-15[D]. Dalian: Dalian University of Technology, 2011. | |
25 | TerraccianoA C, OliveiraS D, MolinaD V, et al. Effect of catalytically active Ce0.8Gd0.2O1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO2 porous ceramics[J]. Combustion and Flame, 2017, 180: 32-39. |
26 | LiJ W, ZhongB J. Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor[J]. Applied Thermal Engineering, 2008, 28: 707-716. |
27 | 谭天恩. 化工原理(上册)[M]. 4版. 北京: 化学工业出版社, 2013: 170-191. |
TanT E. Unit Operations of Chemical Engineering (Book one) [M]. 4th ed. Beijing: Chemical Industry Press, 2013: 170-191. | |
28 | 徐侃. 微小尺寸燃烧中淬熄距离和贫燃极限的研究[D]. 合肥: 中国科学技术大学, 2011. |
XuK. Study of quenching distance and lean-burn extinction limit in mini-scale combustion[D]. Hefei: University of Science and Technology of China, 2011. | |
29 | 陈俊杰, 王谦. 微尺度催化燃烧的研究进展[J]. 应用化工, 2008, 37(11): 1376-1380. |
ChenJ J, WangQ. Research progress of micro-scale catalytic combustion[J]. Applied Chemical Industry, 2008, 37(11): 1376-1380. | |
30 | 王宇豪. 基于CuCe1-xZrxOy系列催化剂的一氧化碳自持燃烧的研究[D]. 西安: 西安交通大学, 2016. |
WangY H. Investigation of carbon monoxide self-sustained combustion based on CuCe1-xZrxOy series catalysts[D]. Xi an: Xi an Jiaotong University, 2016. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 382
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||