化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4199-4206.DOI: 10.11949/0438-1157.20190476
收稿日期:2019-05-07
修回日期:2019-08-13
出版日期:2019-11-05
发布日期:2019-11-05
通讯作者:
胡定华
作者简介:金铭(1995—),女,硕士研究生,基金资助:
Ming JIN(
),Dinghua HU(
),Qiang LI,Desong FAN
Received:2019-05-07
Revised:2019-08-13
Online:2019-11-05
Published:2019-11-05
Contact:
Dinghua HU
摘要:
纳米流体液滴蒸发现象在电子设备冷却、喷墨打印以及医学检测等领域都有广泛应用。为了研究水基Al2O3纳米流体液滴的蒸发特性,建立了纳米流体液滴蒸发的二维瞬态模型,考虑了纳米颗粒输运行为以及液滴内部流动的影响,并采用任意拉格朗日-欧拉法(ALE)捕捉气液运动界面。基于所建立的模型,分析了水基Al2O3纳米流体液滴内部Marangoni流、纳米颗粒初始浓度以及基板温度对纳米流体液滴蒸发特性的影响规律。结果表明,液滴内部Marangoni流会影响气液界面温度分布和蒸发速率。由于液滴内部纳米颗粒浓度分布和气液界面温度发生变化,纳米流体液滴的蒸发速率随着纳米颗粒初始浓度和基板温度升高而增加。
中图分类号:
金铭, 胡定华, 李强, 范德松. Al2O3纳米流体液滴蒸发特性的数值模拟研究[J]. 化工学报, 2019, 70(11): 4199-4206.
Ming JIN, Dinghua HU, Qiang LI, Desong FAN. Simulation of sessile nanofluid droplet evaporation character[J]. CIESC Journal, 2019, 70(11): 4199-4206.
| 材料名称 | 密度/(kg/m3) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) | 动力黏度/(Pa·s) |
|---|---|---|---|---|
| 纳米流体 | 997 | c nf ① | k nf ② | μ nf ③ |
| 硅 | 2329 | 0.79 | 130 | — |
| 空气 | 30 | 0.80 | 0.03 | 2×10-5 |
表1 物性参数
Table 1 Physical properties
| 材料名称 | 密度/(kg/m3) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) | 动力黏度/(Pa·s) |
|---|---|---|---|---|
| 纳米流体 | 997 | c nf ① | k nf ② | μ nf ③ |
| 硅 | 2329 | 0.79 | 130 | — |
| 空气 | 30 | 0.80 | 0.03 | 2×10-5 |
| 网格数 | 最大单元尺寸/μm | 最大相对偏差/% |
|---|---|---|
| 21157 | 7.5 | — |
| 32059 | 5 | 1.09 |
| 38787 | 4 | 0.079 |
表2 网格无关性验证
Table 2 Verification of grid independence
| 网格数 | 最大单元尺寸/μm | 最大相对偏差/% |
|---|---|---|
| 21157 | 7.5 | — |
| 32059 | 5 | 1.09 |
| 38787 | 4 | 0.079 |
| 1 | Sefiane K , Bennacer R . Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates[J]. Advances in Colloid and Interface Science, 2009, 147: 263-271. |
| 2 | Sefiane K , Fukatani Y , Takata Y , et al . Thermal patterns and hydrothermal waves (HTWs) in volatile drops[J]. Langmuir, 2013, 29: 9750-9760. |
| 3 | 刘斌, 李芹芹 . 纳米流体液滴蒸发过程的温度场研究[J]. 制冷, 2017, (1): 1-6. |
| Liu B , Li Q Q . Analysis of temperature field of nano fluid sessile droplet evaporation process temperature field[J]. Refrigeration, 2017, (1): 1-6. | |
| 4 | Moghiman M , Aslani B . Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency[J]. International Journal of Heat and Mass Transfer, 2013, 61: 114-118. |
| 5 | Wei Y , Deng W W , Chen R H . Effects of internal circulation and particle mobility during nanofluid droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1335-1347. |
| 6 | Xiao J F , Attinger D . Simulations of meniscus motion and evaporation for convective deposition manufacturing[C]//Excerpt from the Proceedings of the COMSOL Conference 2010, Boston, 2010: 44-54. |
| 7 | Trueman R E , Domingues E L , Emmett S N , et al . Auto-stratification in drying colloidal dispersions: a diffusive model[J]. Journal of Colloid and Interface Science, 2012, 377: 207-212. |
| 8 | Popov Y O . Evaporative deposition patterns revisited: spatial dimensions of the deposit[J]. Physical Review, 2004, 71: 1-34. |
| 9 | Li Y Q , Liu H , Wang F C , et al . Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate[J]. Microfluid Nanofluid, 2015, 18: 111-120. |
| 10 | Stepanov P L , Vlasov K . Simulation of self-assembly in an evaporating droplet of colloidal solution by dissipative particle dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013, 432: 132-138. |
| 11 | Semenov S , Starov V M , Velarde M G , et al . Droplets evaporation: problems and solutions[J]. European Physical Journal-Special Topics, 2011, 197: 265-278. |
| 12 | Hu H , Larson R G . Evaporation of a sessile droplet on a substrate[J]. Journal of Physical Chemistry B, 2002, 106: 1334-1344. |
| 13 | Wei Y , Deng W W , Chen R H . Effects of insoluble nano-particles on nanofluid droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2016,103: 1335-1347. |
| 14 | Kobayashi M , Nanaumi H , Muto Y . Initial deposition rate of latex particles in the packed bed of zirconia beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347: 2-7. |
| 15 | Patil N D , Bange P G , Bhardwaj R , et al . Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles[J]. Langmuir, 2016, 32: 11958-11972. |
| 16 | Gerken W J , Thomas A V , Koratkar N , et al . Nanofluid pendant droplet evaporation: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2014, 74: 263-268. |
| 17 | Chen P , Harmand S , Szunerits S , et al . Evaporation behavior of PEGylated graphene oxide nanofluid droplets on heated substrate[J]. International Journal of Thermal Sciences, 2019, 135: 445-458. |
| 18 | Widjaja E , Harris M T . Particle deposition study during sessile drop evaporation[J]. American Institute of Chemical Engineers Journal, 2008, 54: 2250-2260. |
| 19 | Pak B C , Cho Y I . Hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11: 151-170. |
| 20 | Hamilton R L , Crosser O K . Thermal conductivity of heterogeneous two-component systems[J]. I&EC Fundamentals, 1962, 1: 187-191. |
| 21 | Ristenpart W D , Kim P G , Domingues C , et al . Influence of substrate conductivity on circulation reversal in evaporating drops[J]. The American Physical Society, 2007, 99: 1-4. |
| 22 | Tanvir S , Qiao L . Surface tension of nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters, 2012, 7: 1-10. |
| 23 | Anyfantakis M , Geng Z , Morel M , et al . Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions[J]. Langmuir, 2015, 31: 4113-4120. |
| 24 | Jiang W T , Ding G L , Peng H , et al . Modeling of nanoparticles’ aggregation and sedimentation in nanofluid[J]. Current Applied Physics, 2010, 10: 934-941. |
| 25 | Yang K , Hong F J , Cheng P . A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian-Eulerian formulation[J]. International Journal of Heat and Mass Transfer, 2014, 70: 409-420. |
| 26 | Semenov S , Starov V M , Rubio R G . Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: computer simulations[J]. The European Physical Journal Special Topics, 2013, 219: 143-154. |
| 27 | Dunna G J , Wilson S K , Duffy B R , et al . A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory[J]. Colloids and Surfaces A: Physicochem, 2008, 323: 50-55. |
| 28 | Bhardwaj R , Fang X H , Attinger D . Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study[J]. New Journal of Physics, 2009, 11: 1-33. |
| 29 | Routh A F , Zimmerman W B . The diffusion coefficient of a swollen microgel particle[J]. Journal of Colloid and Interface Science, 2003, 261: 547-551. |
| 30 | Semenov S , Starov V , Rubio R G , et al . Computer simulations of quasi-steady evaporation of sessile liquid droplets[J]. Progress in Colloid and Polymer Science, 2011, 138: 115-120. |
| 31 | Xu X F , Luo J B . Marangoni flow in an evaporating water droplet[J]. Applied Physics Letters, 2007, 91: 124102. |
| 32 | Gerken W J , Oehlschlaeger M A . Modeling nanofluid sessile drop evaporation[J]. Journal of Heat and Mass Transfer, 2017, 53: 2341-2349. |
| [1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
| [2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
| [3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
| [4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
| [5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
| [6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
| [7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
| [8] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
| [9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
| [10] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
| [11] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
| [12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
| [13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
| [14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
| [15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和 耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号