1 |
Sefiane K , Bennacer R . Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates[J]. Advances in Colloid and Interface Science, 2009, 147: 263-271.
|
2 |
Sefiane K , Fukatani Y , Takata Y , et al . Thermal patterns and hydrothermal waves (HTWs) in volatile drops[J]. Langmuir, 2013, 29: 9750-9760.
|
3 |
刘斌, 李芹芹 . 纳米流体液滴蒸发过程的温度场研究[J]. 制冷, 2017, (1): 1-6.
|
|
Liu B , Li Q Q . Analysis of temperature field of nano fluid sessile droplet evaporation process temperature field[J]. Refrigeration, 2017, (1): 1-6.
|
4 |
Moghiman M , Aslani B . Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency[J]. International Journal of Heat and Mass Transfer, 2013, 61: 114-118.
|
5 |
Wei Y , Deng W W , Chen R H . Effects of internal circulation and particle mobility during nanofluid droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1335-1347.
|
6 |
Xiao J F , Attinger D . Simulations of meniscus motion and evaporation for convective deposition manufacturing[C]//Excerpt from the Proceedings of the COMSOL Conference 2010, Boston, 2010: 44-54.
|
7 |
Trueman R E , Domingues E L , Emmett S N , et al . Auto-stratification in drying colloidal dispersions: a diffusive model[J]. Journal of Colloid and Interface Science, 2012, 377: 207-212.
|
8 |
Popov Y O . Evaporative deposition patterns revisited: spatial dimensions of the deposit[J]. Physical Review, 2004, 71: 1-34.
|
9 |
Li Y Q , Liu H , Wang F C , et al . Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate[J]. Microfluid Nanofluid, 2015, 18: 111-120.
|
10 |
Stepanov P L , Vlasov K . Simulation of self-assembly in an evaporating droplet of colloidal solution by dissipative particle dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013, 432: 132-138.
|
11 |
Semenov S , Starov V M , Velarde M G , et al . Droplets evaporation: problems and solutions[J]. European Physical Journal-Special Topics, 2011, 197: 265-278.
|
12 |
Hu H , Larson R G . Evaporation of a sessile droplet on a substrate[J]. Journal of Physical Chemistry B, 2002, 106: 1334-1344.
|
13 |
Wei Y , Deng W W , Chen R H . Effects of insoluble nano-particles on nanofluid droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2016,103: 1335-1347.
|
14 |
Kobayashi M , Nanaumi H , Muto Y . Initial deposition rate of latex particles in the packed bed of zirconia beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347: 2-7.
|
15 |
Patil N D , Bange P G , Bhardwaj R , et al . Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles[J]. Langmuir, 2016, 32: 11958-11972.
|
16 |
Gerken W J , Thomas A V , Koratkar N , et al . Nanofluid pendant droplet evaporation: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2014, 74: 263-268.
|
17 |
Chen P , Harmand S , Szunerits S , et al . Evaporation behavior of PEGylated graphene oxide nanofluid droplets on heated substrate[J]. International Journal of Thermal Sciences, 2019, 135: 445-458.
|
18 |
Widjaja E , Harris M T . Particle deposition study during sessile drop evaporation[J]. American Institute of Chemical Engineers Journal, 2008, 54: 2250-2260.
|
19 |
Pak B C , Cho Y I . Hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11: 151-170.
|
20 |
Hamilton R L , Crosser O K . Thermal conductivity of heterogeneous two-component systems[J]. I&EC Fundamentals, 1962, 1: 187-191.
|
21 |
Ristenpart W D , Kim P G , Domingues C , et al . Influence of substrate conductivity on circulation reversal in evaporating drops[J]. The American Physical Society, 2007, 99: 1-4.
|
22 |
Tanvir S , Qiao L . Surface tension of nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters, 2012, 7: 1-10.
|
23 |
Anyfantakis M , Geng Z , Morel M , et al . Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions[J]. Langmuir, 2015, 31: 4113-4120.
|
24 |
Jiang W T , Ding G L , Peng H , et al . Modeling of nanoparticles’ aggregation and sedimentation in nanofluid[J]. Current Applied Physics, 2010, 10: 934-941.
|
25 |
Yang K , Hong F J , Cheng P . A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian-Eulerian formulation[J]. International Journal of Heat and Mass Transfer, 2014, 70: 409-420.
|
26 |
Semenov S , Starov V M , Rubio R G . Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: computer simulations[J]. The European Physical Journal Special Topics, 2013, 219: 143-154.
|
27 |
Dunna G J , Wilson S K , Duffy B R , et al . A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory[J]. Colloids and Surfaces A: Physicochem, 2008, 323: 50-55.
|
28 |
Bhardwaj R , Fang X H , Attinger D . Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study[J]. New Journal of Physics, 2009, 11: 1-33.
|
29 |
Routh A F , Zimmerman W B . The diffusion coefficient of a swollen microgel particle[J]. Journal of Colloid and Interface Science, 2003, 261: 547-551.
|
30 |
Semenov S , Starov V , Rubio R G , et al . Computer simulations of quasi-steady evaporation of sessile liquid droplets[J]. Progress in Colloid and Polymer Science, 2011, 138: 115-120.
|
31 |
Xu X F , Luo J B . Marangoni flow in an evaporating water droplet[J]. Applied Physics Letters, 2007, 91: 124102.
|
32 |
Gerken W J , Oehlschlaeger M A . Modeling nanofluid sessile drop evaporation[J]. Journal of Heat and Mass Transfer, 2017, 53: 2341-2349.
|