化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4449-4456.DOI: 10.11949/0438-1157.20190503
收稿日期:
2019-05-13
修回日期:
2019-08-12
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
赵骞
作者简介:
陈峰(1995—),男,硕士研究生,研究生,基金资助:
Feng CHEN(),Yukun HOU,Qian ZHAO()
Received:
2019-05-13
Revised:
2019-08-12
Online:
2019-11-05
Published:
2019-11-05
Contact:
Qian ZHAO
摘要:
利用巯基与环氧的点击反应,向环氧体系中引入二醇结构,并通过硼酸酯键对其进行交联,制备了一系列不同流变性能和玻璃化转变温度的可塑环氧树脂材料。研究了不同的配方对材料性能的影响,结果表明通过改变交联剂与动态链结的比例,体系的流变性能可以被调控;另一方面,改变软硬环氧组分的比例可以使材料的玻璃化转变温度在14.6~36.5℃之间调节。制备了该可塑环氧树脂与密胺通孔泡沫的复合材料,该材料具备良好的快速自黏结性能。材料断裂后,在10 s内即可达到最大黏结强度,且经多次拆卸-黏结循环后,黏结强度可以保持在约0.06 MPa。
中图分类号:
陈峰, 候宇坤, 赵骞. 一种硼酸酯动态交联环氧树脂的合成与性能[J]. 化工学报, 2019, 70(11): 4449-4456.
Feng CHEN, Yukun HOU, Qian ZHAO. Synthesis and properties of epoxy resin crosslinked by dynamic boronic ester bonds[J]. CIESC Journal, 2019, 70(11): 4449-4456.
样品 | m(MP)/g | m(TMB)/g | m(DBU)/g | m(PTME)/g | m(PPGDE)/g |
---|---|---|---|---|---|
E1 | 1.10 | 0.53 | 0.53 | 0.67 | 5.00 |
E2 | 1.01 | 0.49 | 0.49 | 0.76 | 5.00 |
E3 | 0.93 | 0.45 | 0.45 | 0.86 | 5.00 |
E4 | 0.85 | 0.41 | 0.41 | 0.95 | 5.00 |
E5 | 0.76 | 0.37 | 0.37 | 1.05 | 5.00 |
表1 不同流变性能材料的配方
Table 1 Formulations for materials of different rheological properties
样品 | m(MP)/g | m(TMB)/g | m(DBU)/g | m(PTME)/g | m(PPGDE)/g |
---|---|---|---|---|---|
E1 | 1.10 | 0.53 | 0.53 | 0.67 | 5.00 |
E2 | 1.01 | 0.49 | 0.49 | 0.76 | 5.00 |
E3 | 0.93 | 0.45 | 0.45 | 0.86 | 5.00 |
E4 | 0.85 | 0.41 | 0.41 | 0.95 | 5.00 |
E5 | 0.76 | 0.37 | 0.37 | 1.05 | 5.00 |
样品 | m(MP)/g | m(TMB)/g | m(DBU)/g | m(DGOA)/g | m(DABE)/g | m(PPGDE)/g |
---|---|---|---|---|---|---|
E6 | 2.73 | 1.31 | 1.31 | 0.16 | 4.00 | 0.00 |
E7 | 3.01 | 1.44 | 1.44 | 0.18 | 4.00 | 0.75 |
E8 | 3.28 | 1.58 | 1.58 | 0.20 | 4.00 | 1.50 |
E9 | 3.55 | 1.71 | 1.71 | 0.21 | 4.00 | 2.26 |
表2 不同玻璃化转变温度材料的配方
Table 2 Formulations for materials of different glass transition temperature
样品 | m(MP)/g | m(TMB)/g | m(DBU)/g | m(DGOA)/g | m(DABE)/g | m(PPGDE)/g |
---|---|---|---|---|---|---|
E6 | 2.73 | 1.31 | 1.31 | 0.16 | 4.00 | 0.00 |
E7 | 3.01 | 1.44 | 1.44 | 0.18 | 4.00 | 0.75 |
E8 | 3.28 | 1.58 | 1.58 | 0.20 | 4.00 | 1.50 |
E9 | 3.55 | 1.71 | 1.71 | 0.21 | 4.00 | 2.26 |
1 | Zou W K , Dong J T , Luo Y W , et al . Dynamic covalent polymer networks: from old chemistry to modern day innovations[J]. Advanced Materials, 2017, 29(14): 1606100. |
2 | Montarnal D , Capelot M , Leibler L , et al . Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. |
3 | Delpierre S , Willocq B , de Winter J , et al . Dynamic iminoboronate-based boroxine chemistry for the design of ambient humidity-sensitive self-healing polymers[J]. Chemistry - A European Journal, 2017, 23(28): 6730-6735. |
4 | Lai J C , Mei J F , Jia X Y , et al . A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials, 2016, 28(37): 8277-8282. |
5 | Nicolaÿ R , Kamada J , van Wassen A , et al . Responsive gels based on a dynamic covalent trithiocarbonate cross-linker[J]. Macromolecules, 2010, 43(9): 4355-4361. |
6 | Zheng P W , Mccarthy T J . A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism[J]. Journal of the American Chemical Society, 2012, 134(4): 2024-2027. |
7 | Cash J J , Kubo T , Bapat A P , et al . Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules, 2015, 48(7): 2098-2106. |
8 | Bao C Y , Jiang Y J , Zhang H Y , et al . Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines[J]. Advanced Functional Materials, 2018, 28(23): 1800560. |
9 | Fang Z Z , Zheng N , Zhao Q , et al . Healable, reconfigurable, reprocessable thermoset shape memory polymer with highly tunable topological rearrangement kinetics[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22077-22082. |
10 | Bao C Y , Guo Z W , Sun H X , et al . Nitrogen-coordinated boroxines enable the fabrication of mechanically robust supramolecular thermosets capable of healing and recycling under mild conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9478-9486. |
11 | Ying H , Zhang Y , Cheng J . Dynamic urea bond for the design of reversible and self-healing polymers[J]. Nature Communications, 2014, 5: 3218. |
12 | Imbernon L , Oikonomou E K , Norvez S , et al . Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements[J]. Polymer Chemistry, 2015, 6(23): 4271-4278. |
13 | Jin K L , Li L Q , Torkelson J M . Recyclable crosslinked polymer networks via one-step controlled radical polymerization[J]. Advanced Materials, 2016, 28(31): 6746-6750. |
14 | Xiang H P , Yin J F , Lin G H , et al . Photo-crosslinkable, self-healable and reprocessable rubbers[J]. Chemical Engineering Journal, 2019, 358: 878-890. |
15 | Ogden W A , Guan Z B . Recyclable, strong, and highly malleable thermosets based on boroxine networks[J]. Journal of the American Chemical Society, 2018, 140(20): 6217-6220. |
16 | Ferry J D . Viscoelastic Properties of Polymers[M]. 3rd ed. New York: John Wiley & Sons Inc., 1981. |
17 | Liu Y J , Tang Z H , Chen Y , et al . Programming dynamic imine bond into elastomer/graphene composite toward mechanically strong, malleable, and multi-stimuli responsive vitrimer[J]. Composites Science and Technology, 2018, 168: 214-223. |
18 | Liu H C , Zhang H , Wang H , et al . Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity[J]. Chemical Engineering Journal, 2019, 368: 61-70. |
19 | Boland C S , Khan U , Ryan G , et al . Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J]. Science, 2016, 354(6317): 1257-1260. |
20 | Liang J , Zhang X H . Rheological properties of SP in shock transmission application[J]. Journal of Materials in Civil Engineering, 2014, 27(9): 04014250. |
21 | Golinelli N , Spaggiari A , Dragoni E . Mechanical behaviour of magnetic silly putty: viscoelastic and magnetorheological properties[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(8): 953-960. |
22 | Ivanov A E , Larsson H , Galaev I Y , et al . Synthesis of boronate-containing copolymers of N,N-dimethylacrylamide, their interaction with poly(vinyl alcohol) and rheological behaviour of the gels[J]. Polymer, 2004, 45(8): 2495-2505. |
23 | He L H , Fullenkamp D E , Messersmith P B , et al . pH responsive self-healing hydrogels formed by boronate-catechol complexation[J]. Chemical Communications, 2011, 47(26): 7497-7499. |
24 | Cromwell O R , Chung J , Guan Z B . Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds[J]. Journal of the American Chemical Society, 2015, 137(20): 6492-6495. |
25 | Rottger M , Domenech T , Leibler L , et al . High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333): 62-65. |
26 | Zhang Q , Anastasaki A , Li G Z , et al . Multiblock sequence-controlled glycopolymers via Cu(0)-LRP following efficient thiol–halogen, thiol-epoxy and CuAAC reactions[J]. Polymer Chemistry, 2014, 5(12): 3876-3883. |
27 | Yoshimura Y , Yamazaki Y , Saito Y , et al . Synthesis of 1-(5,6-dihydro-2H-thiopyran-2-yl)uracil by a Pummerer-type thioglycosylation reaction: the regioselectivity of allylic substitution[J]. Tetrahedron, 2009, 65(45): 9091-9102. |
28 | Brändle A , Khan A . Thiol–epoxy ‘click polymerization: efficient construction of reactive and functional polymers[J]. Polymer Chemistry, 2012, 3(12): 3224-3227. |
29 | Binder S , Gadwal I , Bielmann A , et al . Thiol-epoxy polymerization via an AB monomer: synthetic access to high molecular weight poly(β-hydroxythio-ether)s[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52(14): 2040-2046. |
30 | Brooks W L A , Sumerlin B S . Synthesis and applications of boronic acid-containing polymers: from materials to medicine[J]. Chemical Reviews, 2016, 116(3): 1375-1397. |
31 | Duncan T T , Berrie B H , Weiss R G . Soft, peelable organogels from partially hydrolyzed poly(vinyl acetate) and benzene-1,4-diboronic acid: applications to clean works of art[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28069-28078. |
32 | Angelova L V , Leskes M , Berrie B H , et al . Selective formation of organo, organo-aqueous, and hydro gel-like materials from partially hydrolysed poly(vinyl acetate)s based on different boron-containing crosslinkers[J]. Soft Matter, 2015, 11(25): 5060-5066. |
33 | Yesilyurt V , Webber M J , Appel E A , et al . Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties[J]. Advanced Materials, 2016, 28(1): 86-91. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[5] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[6] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[7] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[8] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[9] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[10] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[11] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[12] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[13] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[14] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[15] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||