化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 275-286.DOI: 10.11949/0438-1157.20190441
收稿日期:
2019-04-26
修回日期:
2019-05-24
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
魏利平
作者简介:
魏利平(1987—),男,博士,讲师,基金资助:
Liping WEI1(),Guodong JIANG2,Yukuan GU1,Haipeng TENG1
Received:
2019-04-26
Revised:
2019-05-24
Online:
2019-09-06
Published:
2019-09-06
Contact:
Liping WEI
摘要:
煤热解是煤热加工利用的基础反应,热解动力学模型有助于预测煤在热解过程中挥发分脱除规律,当前文献中已报道了多种热解动力学模型,厘清不同热解模型参数选择的差异,评估不同模型对煤种及热解反应适应性可为热解工艺设计提供参考。采用13C NMR核磁共振测量了五彩湾煤和吐鲁番煤的碳化学结构,并使用热重法测量了不同加热速率下的两种低阶煤失重曲线,结合分段式单一速率扫描法、等转化率法和3段式高斯分布活化能模型(3-DAEM)分析热重实验数据。结果表明单一速率扫描法得出的动力学参数难以准确揭示热解反应机理;等转化率法可以较好地得出热解活化能及指前因子分布图;将等转化率方法获得的指前因子赋值给分布活化能模型,可以避免分布活化能模型指前因子选择的盲目性;3-DAEM模型仅需要一条TGA曲线便可获得适用于整个加热速率的动力学参数,其预测结果与实验数据吻合最好,且模拟得出的活化能分布图很好地反映了煤热解三个阶段特征。
中图分类号:
魏利平,江国栋,古玉宽,滕海鹏. 五彩湾煤和吐鲁番煤热解动力学模型评估与应用[J]. 化工学报, 2019, 70(S2): 275-286.
Liping WEI,Guodong JIANG,Yukuan GU,Haipeng TENG. Evaluation and application of pyrolysis kinetic model of Wucaiwan coal and Tulufan coal[J]. CIESC Journal, 2019, 70(S2): 275-286.
Coal type | Proximate analysis/% | Ultimate analysis/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | |
WCW | 9.97 | 3.67 | 27.86 | 58.5 | 78.94 | 3.78 | 16.26 | 0.54 | 0.48 |
TLF | 5.25 | 11.80 | 40.69 | 42.26 | 78.79 | 5.81 | 13.01 | 2.02 | 0.37 |
表1 原煤样品的工业分析和元素分析
Table 1 Proximate and ultimate analyses of raw coals
Coal type | Proximate analysis/% | Ultimate analysis/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | |
WCW | 9.97 | 3.67 | 27.86 | 58.5 | 78.94 | 3.78 | 16.26 | 0.54 | 0.48 |
TLF | 5.25 | 11.80 | 40.69 | 42.26 | 78.79 | 5.81 | 13.01 | 2.02 | 0.37 |
Coal | |||||
---|---|---|---|---|---|
WCW | 10 | 527.27 | 722.94 | 0.78 | 38.49 |
20 | 542.15 | 736.09 | 1.47 | 37.57 | |
30 | 543.20 | 742.95 | 2.10 | 38.01 | |
50 | 546.86 | 777.05 | 3.74 | 35.98 | |
TLF | 10 | 457.18 | 714.67 | 3.48 | 41.49 |
20 | 473.42 | 730.73 | 6.61 | 46.65 | |
30 | 499.54 | 734.35 | 10.01 | 45.58 | |
50 | 518.65 | 747.02 | 17.73 | 45.52 |
表2 两种煤样热解特性参数
Table 2 Pyrolysis characteristic values of two coal samples
Coal | |||||
---|---|---|---|---|---|
WCW | 10 | 527.27 | 722.94 | 0.78 | 38.49 |
20 | 542.15 | 736.09 | 1.47 | 37.57 | |
30 | 543.20 | 742.95 | 2.10 | 38.01 | |
50 | 546.86 | 777.05 | 3.74 | 35.98 | |
TLF | 10 | 457.18 | 714.67 | 3.48 | 41.49 |
20 | 473.42 | 730.73 | 6.61 | 46.65 | |
30 | 499.54 | 734.35 | 10.01 | 45.58 | |
50 | 518.65 | 747.02 | 17.73 | 45.52 |
Coal | T/K | Method | |||
---|---|---|---|---|---|
WCW | 543—560 | C-R | 297.0 | 0.87 | |
Doyle | 291.1 | 0.88 | |||
A-B-S-W | 14.4 | 0.99 | |||
560—740 | C-R | 55.0 | 0.99 | ||
Doyle | 62.5 | 142.49 | 0.99 | ||
A-B-S-W | 48.1 | 3.78 | 0.98 | ||
>740 | C-R | 22.3 | 0.99 | ||
Doyle | 37.0 | 3.13 | 0.99 | ||
A-B-S-W | 30.5 | 0.13 | 0.76 | ||
TLF | 473—500 | C-R | 168.1 | 0.78 | |
Doyle | 148.5 | 0.77 | |||
A-B-S-W | 13.3 | 0.99 | |||
560—746 | C-R | 53.4 | 0.95 | ||
Doyle | 60.6 | 108.81 | 0.96 | ||
A-B-S-W | 66.55 | 1271.17 | 0.90 | ||
>746 | C-R | 9.4 | 0.92 | ||
Doyle | 23.95 | 1.21 | 0.99 | ||
A-B-S-W | 18.81 | 0.25 | 0.35 |
表3 升温速率为20℃/min时两种煤的热解动力学参数Table 3 Kinetics parameter of coal pyrolysis at heating rate of 20℃/min
Coal | T/K | Method | |||
---|---|---|---|---|---|
WCW | 543—560 | C-R | 297.0 | 0.87 | |
Doyle | 291.1 | 0.88 | |||
A-B-S-W | 14.4 | 0.99 | |||
560—740 | C-R | 55.0 | 0.99 | ||
Doyle | 62.5 | 142.49 | 0.99 | ||
A-B-S-W | 48.1 | 3.78 | 0.98 | ||
>740 | C-R | 22.3 | 0.99 | ||
Doyle | 37.0 | 3.13 | 0.99 | ||
A-B-S-W | 30.5 | 0.13 | 0.76 | ||
TLF | 473—500 | C-R | 168.1 | 0.78 | |
Doyle | 148.5 | 0.77 | |||
A-B-S-W | 13.3 | 0.99 | |||
560—746 | C-R | 53.4 | 0.95 | ||
Doyle | 60.6 | 108.81 | 0.96 | ||
A-B-S-W | 66.55 | 1271.17 | 0.90 | ||
>746 | C-R | 9.4 | 0.92 | ||
Doyle | 23.95 | 1.21 | 0.99 | ||
A-B-S-W | 18.81 | 0.25 | 0.35 |
Coal | n | OF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WCW | 279.06 | 9.90 | 348.08 | 74.43 | 355.20 | 52.77 | 0.200 | 0.334 | 3.820 | 0.0005 |
TLF | 176.13 | 118.51 | 208.05 | 3.62 | 233.95 | 35.65 | 0.265 | 0.365 | 2.336 | 0.0008 |
表4 两种煤样3-DAEM热解动力学参数 (20?K/min)
Table 4 Kinetic parameters of 3-DAEM for pyrolysis of coal samples at heating rate of 20?K/min
Coal | n | OF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WCW | 279.06 | 9.90 | 348.08 | 74.43 | 355.20 | 52.77 | 0.200 | 0.334 | 3.820 | 0.0005 |
TLF | 176.13 | 118.51 | 208.05 | 3.62 | 233.95 | 35.65 | 0.265 | 0.365 | 2.336 | 0.0008 |
1 | JinH, FanC, WeiW, et al. Evolution of pore structure and produced gases of Zhundong coal particle during gasification in supercritical water[J]. The Journal of Supercritical Fluids, 2018, (136): 102-109. |
2 | WiserW H, HillG R, KertamusN J. Kinetic study of pyrolysis of high volatile bituminous coal[J]. Industrial & Engineering Chemistry Research, 1967, 6(1): 133-138. |
3 | ArenillasA, PevidaC, RubieraF. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003, 82(15): 2001-2006. |
4 | LuY K, ChangL P, XieK C. Effects of coal structure on its pyrolysis characteristics under N2 and Ar atmosphere[J]. Energy Sources, 2001, 23(8): 717-725. |
5 | 赵岩, 刘栗, 邱朋华, 等. 准东煤热解动力学单一扫描速率法应用局限性[J]. 哈尔滨工业大学学报, 2016, 48(7): 58-66. |
ZhaoY, LiuL, QiuP H, alet .Application limitations of single scanning rate method in pyrolysis kinetics of Zhundong coal[J]. Journal of Harbin Institute of Technology, 2016, 48(7): 58-66. | |
6 | OpfermannJ R, KaisersbergerE, FlammersheimH J. Model-free analysis of thermoanalytical data-advantages and limitations[J]. Thermochimica Acta, 2002, 391(1/2): 119-127. |
7 | PittG J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, (41): 267-274. |
8 | WangJ, LiP, LiangL. Kinetics modeling of low-rank coal pyrolysis based on a three-Gaussian distributed activation energy model (DAEM) reaction model[J]. Energy & Fuels, 2016, 30(11): 9693-9702. |
9 | CaprariisB D, FilippisP D, HerceC. Double-Gaussian distributed activation energy model for coal devolatilization[J]. Energy & Fuels, 2012, 26(10): 6153-6159. |
0 | SerioM A, HamblenD G, MarkhamJ R. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energy & Fuels, 1987, 1(2): 138-152. |
11 | MustafaG, SeminG. A study on thermal decomposition kinetics of some turkish coals[J]. Energy Sources, 2005, 27(8): 749-759. |
12 | JiangG D, WeiL P. Analysis of pyrolysis kinetic model for processing of thermogravimetric analysis data[M]// Phase Change Materials and Their Applications. London: IntechOpen, 2018: 143-163. |
13 | JiangG D, WeiL P. Depolymerization model for flash pyrolysis of zhundong coal: competition and coordination reaction mechanisms between the bridge scission and condensation[J]. Thermochimica Acta, 2019, (675): 44-54. |
14 | BurnhamA, DinhL. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. Journal of Thermal Analysis & Calorimetry, 2007, 89(2): 479-490. |
15 | SharpJ H, WentworthS A. Kinetic analysis of thermogravimetric data[J]. Analytical Chemistry, 1969, 41(14): 2060-2062. |
16 | CoatsA W, RedfernJ P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, (201): 68-69. |
17 | VyazovkinS, WightC A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340/341: 53-68. |
18 | FriedmanH L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 1964, 6(1): 183-195. |
19 | LiuH. Combustion of coal chars in O2/CO2 and O2/N2 mixtures: a comparative study with non-isothermal thermogravimetric analyzer (TGA) tests[J]. Energy & Fuels, 2009, 23(9): 4278-4285. |
20 | KissingerH E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 2002, 29(11): 1702-1706. |
21 | 江国栋, 魏利平, 滕海鹏, 等. 基于热重法的准东煤等转化率热解动力学模型[J]. 化工学报, 2017, 68: 1417-1422. |
JiangG D, WeiL P, TengH P, et al. A kinetic model based on TGA data for pyrolysis of Zhundong coal[J]. CIESC Journal, 2017, 68: 1417-1422. | |
22 | CaiJ, WuW, LiuR. Sensitivity analysis of three-parallel-DAEM-reaction modelfor describing rice straw pyrolysis[J]. Bioresour. Technol., 2013, 132: 423. |
23 | CaiJ, LiuR. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass[J]. Bioresour. Technol., 2008, 99(8): 2795-2799. |
24 | RiceA M. An introduction to radiotherapy[J]. Nursing Standard, 1997, 12(3): 49. |
25 | 韩峰, 蒙爱红, 鲁伟, 等. 沙尔湖褐煤和红沙泉不粘煤的热解动力学及热解产物分布[J]. 清华大学学报 (自然科学版), 2013, 53(3): 348-352. |
HanF, MengA H, LuW, et al. Pyrolysis kinetics and product distribution of two coals[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(3): 348- 352. | |
26 | ArenillasA, RubieraF, PevidaC, et al. A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical & Applied Pyrolysis, 2001, 58/59(2): 685-701. |
27 | JainA A, MehraA, RanadeV V. Processing of TGA data: analysis of isoconversional and model fitting methods[J]. Fuel, 2016, 165: 490-498. |
28 | VyazovkinS. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2): 178-183. |
29 | FioriL, ValbusaM, LorenziD, et al. Modeling of the devolatilization kinetics during pyrolysis of grape residues[J]. Bioresour. Technol., 2012, 103: 389. |
30 | 王俊宏, 常丽萍, 谢克昌. 西部煤的热解特性及动力学研究 [J].煤炭转化, 2009, 32(3): 1-5. |
WangJ H, ChangL P, XieK C. Study on the pyrolysis andkinetics of coal of western China[J]. Coal Conversion, 2009, 32(3): 1-5. | |
31 | YanJ C, JiaoH R, LiZ K, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods [J]. Fuel, 2019, 241: 382-391. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[7] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[10] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[11] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||