化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 329-335.DOI: 10.11949/0438-1157.20190597
万忠民(),全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠
收稿日期:
2019-05-30
修回日期:
2019-06-05
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
万忠民
作者简介:
万忠民(1977—),男,博士,教授,基金资助:
Zhongmin WAN(),Wenxiang QUAN,Hanzhang YAN,Xi CHEN,Taiming HUANG,Yan ZHANG,Jing ZHANG,Xiangzhong KONG
Received:
2019-05-30
Revised:
2019-06-05
Online:
2019-09-06
Published:
2019-09-06
Contact:
Zhongmin WAN
摘要:
建立了无人机用质子交换膜燃料电池(PEMFC)动力系统性能随大气环境变化的数学模型,通过Matlab进行仿真,分析海拔高度对PEMFC系统运行状况和热力学性能的影响。结果显示: 随着高度的增加,系统输出电压、输出电功率及系统电效率呈下降趋势;当高度一定时,随着电流密度的增加,系统输出电功率有最大值,但电堆输出电压和系统输出电效率下降;氢气进气压力的增大使系统的输出电压、电功率和电效率逐渐增大;为了提高燃料电池系统在一定高度下的性能,需要选择合适的电流密度和较高的氢气进气压力。
中图分类号:
万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
Zhongmin WAN,Wenxiang QUAN,Hanzhang YAN,Xi CHEN,Taiming HUANG,Yan ZHANG,Jing ZHANG,Xiangzhong KONG. Performance analysis of fuel cell system for unmanned aerial vehicle[J]. CIESC Journal, 2019, 70(S2): 329-335.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
单片燃料电池数量 | 30 | 氢气过量系数 | 1.2 |
进气温度/K | 348 | 氧气过量系数 | 1.2 |
阳极进气压力/atm | 1~3 | 电流密度/mA | 0~1000 |
阴极进气压力/atm | 1~3 | 活化面积 | 200 |
表1 PEMFC电堆参数
Table 1 PEMFC stack parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
单片燃料电池数量 | 30 | 氢气过量系数 | 1.2 |
进气温度/K | 348 | 氧气过量系数 | 1.2 |
阳极进气压力/atm | 1~3 | 电流密度/mA | 0~1000 |
阴极进气压力/atm | 1~3 | 活化面积 | 200 |
1 | AustinR. Unmanned aircraft systems: UAVs design, development, and deployment[J]. Journal Publications Chestnet.Org., 2010, 79(50): 31-36. |
2 | PawY C, BalasG J. Development and application of an integrated framework for small UAV flight control development[J]. Mechatronics, 2011, 21(5): 789-802. |
3 | XieH, LynchA F, JagersandM. Dynamic IBVS of a rotary wing UAV using line features[J]. Robotica, 2016, 34(9): 2009-2026. |
4 | ZengY, ZhangR, LimT J. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42. |
5 | LarminieJ, DicksA. Fuel Cell Systems Explained[M]. 2nd ed. Wiley, 2003. |
6 | ChenH , PeiP , SongM . Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. |
7 | WilberforceT , AlaswadA , PalumboA , et al. Advances in stationary and portable fuel cell applications[J]. International Journal of Hydrogen Energy, 2016, 41(37): 16509-16522. |
8 | 汪飞杰, 杨代军, 张浩, 等. 1.5 kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386. |
WangF J, YangD J, ZhangH, et al. Response features of a 1.5 kW proton exchange membrane fuel cell stack for dynamic cycle[J]. CIESC Journal, 2013, 64(4): 1380-1386. | |
9 | MorenoN G, MolinaM C, GervasioD, et al. Approaches to polymer electrolyte membrane fuel cells and their cost[J]. Renewable & Sustainable Energy Reviews, 2015, 52: 897-906. |
10 | 陈硕翼, 朱卫东, 张丽, 等. 氢能燃料电池技术发展现状与趋势[J]. 科技中国, 2018, 248(5): 17-19. |
Chen S Y, Zhu W D, Zhang L, et al Technology development status and trends of hydrogen fuel cells[J]. Chinese Science and Technology, 2018, 248 (5): 17-19. | |
11 | LeeB, ParkP, KimK, et al. Erratum to “The flight test and power simulations of an UAV powered by solar cells, a fuel cell and batteries”[J]. Journal of Mechanical Science & Technology, 2014, 28(3): 1137. |
12 | GongA, VerstraeteD. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21311-21333. |
13 | WrightS, PinkelmanA. Natural gas internal combustion engine hybrid passenger vehicle[J]. International Journal of Energy Research, 2010, 32(7): 612-622. |
14 | LeeB, ParkP, KimC, et al. Power managements of a hybrid electric propulsion system for UAVs[J]. Journal of Mechanical Science & Technology, 2012, 26(8): 2291-2299. |
15 | FonsecaR D, BideauxE, GerardM, et al. Control of PEMFC system air group using differential flatness approach: validation by a dynamic fuel cell system model[J]. Applied Energy, 2014, 113(6): 219-229. |
16 | BradleyT, MoffittB, ParekhD, et al. Flight test results for a fuel cell unmanned aerial vehicle[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nwvada: AIAA Journal, 2013. |
17 | BradleyT H, MoffittB A, FullerT F, et al. Comparison of design methods for fuel-cell-powered unmanned aerial vehicles[J]. Journal of Aircraft, 2015, 46(6): 1945-1956. |
18 | OkumusE , SanF G B , OkurO , et al. Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2691-2697. |
19 | ZhangX, LiuL, XuG. Energy management strategy of hybrid PEMFC-PV-battery propulsion system for low altitude UAVs[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016: 5109. |
20 | MoffittB A. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles[D]. Atlanta , US: Georgia Institute of Technology, 2010. |
21 | CorreaG, BorelloF, SantarelliM. Sensitivity analysis of temperature uncertainty in an aircraft PEM fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14745-14758. |
22 | BradleyT H, MoffittB A, MavrisD N, et al. Hardware-in-the-loop testing of a fuel cell aircraft powerplant[J]. Journal of Propulsion & Power, 2012, 25(6): 1336-1344. |
23 | SalehI M. Modelling, simulation and performance evaluation: PEM fuel cells for high altitude UAS[D]. Sheffield: Sheffield Hallam University, 2015. |
24 | LeeB, KwonS, ParkP, et al. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries[J]. Aerospace & Electronic Systems IEEE Transactions on, 2014, 50(4): 3167-3177. |
25 | 卫东, 郑东, 褚磊民. 空冷型质子交换膜燃料电池堆最优性能输出控制 [J]. 化工学报, 2010, 61(5): 1293-1300. |
WeiD, ZhengD, ChuL M. Output control of optimal performance for air-cooling PEMFC stack[J]. CIESC Journal, 2010, 61(5): 1293-1300. | |
26 | WadeN, SmithS. Simulation of gas and water management strategies in PEM fuel cells for UAV power[C]// Meeting of the Aps Division of Fluid Dynamics. 2013. |
27 | 李英, 周勤文, 张香平. 质子交换膜燃料电池稳态自增湿性能分析[J]. 化工学报, 2014, 65(5): 1893-1899. |
LiY, ZhouQ W, ZhangX P. Numerical analysis of steady state self-humidification performance of PEMFC[J]. CIESC Journal, 2014, 65(5): 1893-1899. | |
28 | KongI M, ChoiJ W, KimS I, et al. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer[J]. Applied Energy, 2015, 145: 345-353. |
29 | SrinivasanS , VelevO A , ParthasarathyA , et al. High energy efficiency and high power density proton exchange membrane fuel cells-electrode kinetics and mass transport[J]. Journal of Power Sources, 1991, 36(3): 299-320. |
30 | BenzigerJ B, SatterfieldM B, HogarthW H J, et al. The power performance curve for engineering analysis of fuel cells[J]. Journal of Power Sources, 2006, 155(2): 272-285. |
31 | XiaoS, XinL. Research on key technologies of standard atmosphere database[C]// Asia Simulation Conference-International Conference on System Simulation & Scientific Computing. 2008. |
32 | LeeS H, AldredgeR C. Analytic approach to determine optimal conditions for maximizing altitude of sounding rocket: flight in standard atmosphere[J]. Aerospace Science & Technology, 2015, 46(5): 374-385. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[7] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[8] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[9] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[10] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[11] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[12] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[13] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[14] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[15] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||