化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 37-43.DOI: 10.11949/0438-1157.20190596
收稿日期:
2019-05-30
修回日期:
2019-06-04
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
赵庆国
作者简介:
赵庆国(1962—),男,博士,副教授,基金资助:
Qingguo ZHAO(),Jianru FENG,Yuting WU,Hang GUO
Received:
2019-05-30
Revised:
2019-06-04
Online:
2019-09-06
Published:
2019-09-06
Contact:
Qingguo ZHAO
摘要:
通过建立理论模型,计算熔融盐的密度并与实验数据做比较,进行误差分析得出二次多项式模型是最佳的计算方法。混合熔融盐熔点到各组分盐熔点之间的温度区域,称之为“低温共熔区”。其熔融盐是固液共存状态,热物性无法直接测量,必须采用理论研究与实验验证相结合的方法来获取。采用二次多项式模型,利用外插法对混合熔融盐低温共熔区的密度进行计算,得到了全温度范围内的密度并且误差很小,证明此理论计算方法是可行的。在研究混合熔融盐密度时,为了减小误差,实验数据均来自同一文献或者同一研究组。
中图分类号:
赵庆国,冯建茹,吴玉庭,郭航. 混合熔融盐低温共熔区的密度计算[J]. 化工学报, 2019, 70(S2): 37-43.
Qingguo ZHAO,Jianru FENG,Yuting WU,Hang GUO. Densities of component salts in low-temperature eutectic region[J]. CIESC Journal, 2019, 70(S2): 37-43.
熔融盐 | 温度/℃ | 密度/(kg/m3) | 三种关系模型 | 误差/% | 文献 | ||
---|---|---|---|---|---|---|---|
线性关系 | 二次多项式 | 指数关系 | |||||
NaNO3 | 318 | 1904 | ρ=2118.037-0.6722464t ρ=2109.104- 0.6255731t-0.00006018318t 2 ρ=1910.156exp(-0.0003620212(t-310)) | 0.0138 | 0.00452 | 0.0332 | [ |
344 | 18877 | -0.0115 | -0.0114 | -0.0112 | |||
360 | 1876 | 0.00150 | 0.00520 | -0.00580 | |||
378 | 1864 | -0.0039 | 0.0021 | -0.0157 | |||
402 | 1848 | -0.0111 | -0.0055 | -0.0225 | |||
415 | 1839 | 0.00300 | 0.00690 | -0.00490 | |||
458 | 1810 | 0.00820 | -0.00180 | 0.0279 | |||
最大相对误差 | 0.0138 | 0.0114 | 0.0332 | ||||
NaNO3 | 342 | 1893 | ρ=2133.843-0.7040474t ρ=2173.215-0.8966219+0.0002319207t 2 ρ=1916.719exp(-0.0003821566(t-310)) | -0.019 | 0.0134 | -0.000646 | [ |
400 | 1852 | -0.018 | -0.0480 | -0.0351 | |||
433 | 1828 | 0.0311 | 0.00230 | 0.0158 | |||
452 | 1814 | 0.0734 | 0.0578 | 0.0661 | |||
491 | 1789 | -0.0670 | -0.0250 | -0.0403 | |||
最大相对误差 | 0.0734 | 0.0578 | 0.0661 | ||||
NaNO3 | 324 | 1903 | ρ=2108.804-0.6316582t ρ=1872.441+0.6904648t-0.001837628t 2 ρ=1913.176exp(-0.0003358244(t-310)) | 0.0603 | 0.0128 | 0.0632 | [ |
333 | 1899 | -0.028 | -0.021 | -0.0287 | |||
353 | 1887 | -0.062 | 0.0101 | -0.0664 | |||
393 | 1860 | 0.0302 | -0.001 | 0.0315 | |||
最大相对误差 | 0.0302 | -0.001 | 0.0315 |
表1 纯组分NaNO3熔融盐的密度及其误差分析
Table 1 Error analysis of density datasets for NaNO3
熔融盐 | 温度/℃ | 密度/(kg/m3) | 三种关系模型 | 误差/% | 文献 | ||
---|---|---|---|---|---|---|---|
线性关系 | 二次多项式 | 指数关系 | |||||
NaNO3 | 318 | 1904 | ρ=2118.037-0.6722464t ρ=2109.104- 0.6255731t-0.00006018318t 2 ρ=1910.156exp(-0.0003620212(t-310)) | 0.0138 | 0.00452 | 0.0332 | [ |
344 | 18877 | -0.0115 | -0.0114 | -0.0112 | |||
360 | 1876 | 0.00150 | 0.00520 | -0.00580 | |||
378 | 1864 | -0.0039 | 0.0021 | -0.0157 | |||
402 | 1848 | -0.0111 | -0.0055 | -0.0225 | |||
415 | 1839 | 0.00300 | 0.00690 | -0.00490 | |||
458 | 1810 | 0.00820 | -0.00180 | 0.0279 | |||
最大相对误差 | 0.0138 | 0.0114 | 0.0332 | ||||
NaNO3 | 342 | 1893 | ρ=2133.843-0.7040474t ρ=2173.215-0.8966219+0.0002319207t 2 ρ=1916.719exp(-0.0003821566(t-310)) | -0.019 | 0.0134 | -0.000646 | [ |
400 | 1852 | -0.018 | -0.0480 | -0.0351 | |||
433 | 1828 | 0.0311 | 0.00230 | 0.0158 | |||
452 | 1814 | 0.0734 | 0.0578 | 0.0661 | |||
491 | 1789 | -0.0670 | -0.0250 | -0.0403 | |||
最大相对误差 | 0.0734 | 0.0578 | 0.0661 | ||||
NaNO3 | 324 | 1903 | ρ=2108.804-0.6316582t ρ=1872.441+0.6904648t-0.001837628t 2 ρ=1913.176exp(-0.0003358244(t-310)) | 0.0603 | 0.0128 | 0.0632 | [ |
333 | 1899 | -0.028 | -0.021 | -0.0287 | |||
353 | 1887 | -0.062 | 0.0101 | -0.0664 | |||
393 | 1860 | 0.0302 | -0.001 | 0.0315 | |||
最大相对误差 | 0.0302 | -0.001 | 0.0315 |
熔融盐 | 温度 范围/℃ | 三种关系模型 | 误差/% | 文献 | ||
---|---|---|---|---|---|---|
线性 关系 | 二次多项式关系 | 指数 关系 | ||||
NaNO3 | 318~492 | ρ=2125.627- 0.6867394t ρ=2114.155- 0.6281429t- 0.00007355967t 2 ρ=1913.406exp(- 0.0003709027(t- 310)) | 0.229 | 0.219 | 0.247 | [ |
KNO3 | 344~612 | ρ=2117.172- 0.7295381t ρ=2118.253- 0.7343305t+5.177395×10- 6t 2 ρ=1871.359exp(- 4.101913×10- 4(t- 339)) | 0.297 | 0.298 | 0.325 | [ |
NaCl | 876~139 | ρ=1922.625- 0.4693520t ρ=1953.603- 0.5265682t+0.00002569246t 2 ρ=1550.341exp(- 0.0003357776(t- 804)) | 0.298 | 0.261 | 0.271 | [ |
KBr | 740~930 | ρ=2737.040- 0.8297332t ρ=2811.161- 1.007957t+0.0001065906t 2 ρ=2129.187exp(- 0.0004061447(t- 734)) | 0.035 | 0.018 | 0.022 | [ |
NaBr | 735~945 | ρ=2951.834- 0.8168944t ρ=2998.893- 0.9286811t+0.00006601913t 2 ρ=2342.509exp(- 0.0003614983(t- 747)) | 0.023 | 0.021 | 0.025 | [ |
CsBr | 637~860 | ρ=3910.889- 1.223433t ρ=3925.138- 1.261939t+0.00002578241t 2 ρ=3134.661exp(- 0.0004083698(t- 636)) | 0.020 | 0.019 | 0.074 | [ |
KI | 682~903 | ρ=3098.547- 0.9557355t ρ=3123.435- 1.018949t+0.00003990059t 2 ρ=2449.417exp(- 0.0004083295(t- 681)) | 0.028 | 0.022 | 0.074 | [ |
表2 多种一元熔融盐的密度及其误差
Table 2 Error analysis of density datasets for some pure salts
熔融盐 | 温度 范围/℃ | 三种关系模型 | 误差/% | 文献 | ||
---|---|---|---|---|---|---|
线性 关系 | 二次多项式关系 | 指数 关系 | ||||
NaNO3 | 318~492 | ρ=2125.627- 0.6867394t ρ=2114.155- 0.6281429t- 0.00007355967t 2 ρ=1913.406exp(- 0.0003709027(t- 310)) | 0.229 | 0.219 | 0.247 | [ |
KNO3 | 344~612 | ρ=2117.172- 0.7295381t ρ=2118.253- 0.7343305t+5.177395×10- 6t 2 ρ=1871.359exp(- 4.101913×10- 4(t- 339)) | 0.297 | 0.298 | 0.325 | [ |
NaCl | 876~139 | ρ=1922.625- 0.4693520t ρ=1953.603- 0.5265682t+0.00002569246t 2 ρ=1550.341exp(- 0.0003357776(t- 804)) | 0.298 | 0.261 | 0.271 | [ |
KBr | 740~930 | ρ=2737.040- 0.8297332t ρ=2811.161- 1.007957t+0.0001065906t 2 ρ=2129.187exp(- 0.0004061447(t- 734)) | 0.035 | 0.018 | 0.022 | [ |
NaBr | 735~945 | ρ=2951.834- 0.8168944t ρ=2998.893- 0.9286811t+0.00006601913t 2 ρ=2342.509exp(- 0.0003614983(t- 747)) | 0.023 | 0.021 | 0.025 | [ |
CsBr | 637~860 | ρ=3910.889- 1.223433t ρ=3925.138- 1.261939t+0.00002578241t 2 ρ=3134.661exp(- 0.0004083698(t- 636)) | 0.020 | 0.019 | 0.074 | [ |
KI | 682~903 | ρ=3098.547- 0.9557355t ρ=3123.435- 1.018949t+0.00003990059t 2 ρ=2449.417exp(- 0.0004083295(t- 681)) | 0.028 | 0.022 | 0.074 | [ |
混合熔融盐 | 纯质盐最大相对误差/% | 混合熔融盐最大相对误差/% | 文献 | |
---|---|---|---|---|
45.15%KCl-54.85%KI | KCl | 0.0571 | 0.60 | [ |
KI | 0.0224 | |||
50%NaNO3-50%KNO3 | NaNO3 | 0.236 | 0.24 | [ |
KNO3 | 0.159 | |||
41.2%KCl-58.8%LiCl | KCl | 0.0571 | 0.11 | [ |
LiCl | 0.0153 |
表3 纯质盐与二元混合熔融盐密度的最大相对误差
Table 3 Maximum relative error of pure salt and mixed molten salt in densities
混合熔融盐 | 纯质盐最大相对误差/% | 混合熔融盐最大相对误差/% | 文献 | |
---|---|---|---|---|
45.15%KCl-54.85%KI | KCl | 0.0571 | 0.60 | [ |
KI | 0.0224 | |||
50%NaNO3-50%KNO3 | NaNO3 | 0.236 | 0.24 | [ |
KNO3 | 0.159 | |||
41.2%KCl-58.8%LiCl | KCl | 0.0571 | 0.11 | [ |
LiCl | 0.0153 |
混合熔融盐 | 纯质盐最大 相对误差/% | 混合熔融盐最大相对误差/% | 文献 | |
---|---|---|---|---|
7%NaNO3-44%KNO3-49%NaNO2 | NaNO3 | 0.21 | 0.20 | [ |
KNO3 | 0.29 | |||
NaNO2 | 0.18 | |||
63%CaCl2-27%NaCl-10%KCl | CaCl | 0.214 | 0.62 | [ |
NaCl | 0.11 | |||
KCl | 0.516 | |||
57.5%LiCl-13.3%KCl -29.2%CsCl | LiCl | 0.153 | 0.80 | [ |
KCl | 0.571 | |||
CsCl | 0.332 |
表4 纯质盐与三元混合熔融盐密度的最大相对误差
Table 4 Maximum relative error of pure salt and ternary mixed molten salt in densities
混合熔融盐 | 纯质盐最大 相对误差/% | 混合熔融盐最大相对误差/% | 文献 | |
---|---|---|---|---|
7%NaNO3-44%KNO3-49%NaNO2 | NaNO3 | 0.21 | 0.20 | [ |
KNO3 | 0.29 | |||
NaNO2 | 0.18 | |||
63%CaCl2-27%NaCl-10%KCl | CaCl | 0.214 | 0.62 | [ |
NaCl | 0.11 | |||
KCl | 0.516 | |||
57.5%LiCl-13.3%KCl -29.2%CsCl | LiCl | 0.153 | 0.80 | [ |
KCl | 0.571 | |||
CsCl | 0.332 |
1 | 彭强, 丁静, 魏小兰, 等 . 硝酸熔盐体系在能源利用中的研究进展[J]. 现代化工, 2009, 29(6): 17-22. |
Peng Q , Ding J , Wei X L , et al . Research progress of nitric acid molten salt system in energy utilization[J]. The Modern Chemical Industry, 2009, 29(6): 17-22. | |
2 | Herrmann U , Kelly B , Henry P . Two-tank molten salt storage for parabolic trough solar power plants [J]. Energy, 2004, 29(6): 883-893. |
3 | Doug B , John H . Testing of thermo cline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants[J]. Journal of Solar energy Engineering, 2005, (127): 109-116 . |
4 | 许佩佩, 刘建忠, 周俊虎 . 塔式太阳能热发电接收器的研究进展[J]. 热能动力工程, 2014, 29(3): 223-300. |
Xu P P , Liu J Z , Zhou J H . Research progress of tower solar thermal power receiver[J]. Thermal Power Engineering, 2014, 29(3): 223-300. | |
5 | Goodwin H M , Mailey R D . On the density, electrical conductivity and viscosity of fused salts and their mixtures[J]. Physical Review, 1907, 25(6): 469-489. |
6 | Janz G J , Krebs U , Siegenthaler H F , et al . Molten salts: volume 3 nitrates, nitrites, and mixtures: electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1972, 1(3): 581-746. |
7 | Fawsitt C E . CXXIV—viscosity determinations at high temperatures[J]. J. Chem. Soc., 1908, 93: 1299-1307. |
8 | Artsdalen E R V , Yaffe I S . Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI [J]. Journal of Physical Chemistry, 1955, 59(2): 118-127. |
9 | Janz G J , Tomkins R P T , Allen C B , et al . Molten salts: volume 4, part 2, chlorides and mixtures electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1975, 4(4): 871-1178. |
10 | Janz J , Tomkins R P T , Allen C B , et al . Molten salts: volume 4, part 3, bromides and mixtures; iodides and mixtures electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1977, 6(2): 409- -596. |
11 | Price D L . Density fluctuation in molten salts(Ⅰ): Inelastic neutron scattering from liquid RbBr[J]. Physical Review A, 1975, 11 (6): 2124-2133. |
12 | Notoya R . Physical properties of molten salts in an electron donor-acceptor approach: the density[J]. Russian Journal of Chemistry, 2002, 38(3): 293-298. |
13 | Palomar J , Ferro V R , Torrecilla J S , et al . Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 6041-6048. |
14 | 李义根, 吕松涛 . Na3AlF6-Al2O3-Y2O3-MgF2熔盐体系密度的研究[J]. 稀土, 1992, 13(5): 31-35. |
Li Y G , Lyu S T . Study on density of molten salt system of Na3AlF6-Al2O3-Y2O3-MgF2 [J]. Rare Earth, 1992, 13(5): 31-35. | |
15 | Minevich A , Marcus Y . Densities of solid and molten salt hydrates and their mixtures and viscosities of the molten salts[J]. Journal of Chemical Engineering Data, 2004, 49(5): 1451-1455. |
16 | Liu F G , Gao B L . Measurement and estimation for density of NaNO2-KNO3-NaNO3 ternary molten salts[C]//The 1st World Non-Grid-Connected Wind Power and Energy Conference 2009. Nanjing, 2009: 1-4. |
17 | Lamprecht G J . Densities of the molten salt system cesium bromide-cuprous bromide [J]. Journal of Chemical and Engineering Data, 1977, 22(3): 329-330. |
18 | Hiroshi I , Yasuo H . Densities of eutectic mixtures of molten alkali chlorides below 673 K[J]. Journal of Chemical and Engineering Data, 2001, 46(5): 1203-1205. |
19 | Xiong Y , Shi J , Wu Y , et al . Preparation and investigation on density and surface tension of quaternary bromides for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2016, 157: 709-715. |
20 | Ignatev V V , Merzlyakov A V , Subbotin V G , et al . Experimental investigation of the physical properties of salt melts containing sodium and lithium fluorides and beryllium difluoride[J]. Atomnaya Énergiya, 2006, 101(5): 822-829. |
21 | Serrano-López R , Fradera J , Cuesta-López S , et al . Molten salts database for energy applications[J]. Chemical Engineering and Processing, 2013, 73: 87-102. |
22 | Wu Y , Ren N , Wang T , et al . Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant[J]. Solar Energy, 2011, 85: 1957-1966. |
23 | Sang L , Cai M , Ren N , et al . Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate[J]. Solar Energy Materials and Solar Cells, 2014, 124: 61-66. |
24 | Zhao Q , Liu S , Guo H , et al . A theoretical model for predicting the thermal conductivity of binary molten salts[J]. International Journal of Heat and Mass Transfer, 2016, 92(1): 639-642. |
25 | Zhao Q , Hu C , Liu S , et al . A unit-cell model for predicting the viscosity of binary molten salts[J]. International Journal of Heat and Mass Transfer, 2017, 107: 484-488. |
26 | Tufeu R , Petitet J P , Denielou L , et al . Experimental determination of the thermal conductivity of molten pure salts and salt mixtures[J]. International Journal of Thermophysics, 1985, 6(4): 315-330. |
27 | Layboum K , Madgin W M . Densities of molten inorganic nitrate mixture[J]. J. Chem. Soc., 1934, 1(1): 1-7. |
28 | Zhu H , Shibata Y , Sato Y , et al . Density and ultrasonic velocity of NaNO3-MNO3(M: Li, K, Rb, Cs) binary melts[J]. Netsu. Bussei., 1996, 10(4): 102-108. |
29 | Cantor S . Density and viscosity of several molten fluoride mixtures[R]. Oak Ridge National Laboratory, 1973. |
30 | Kirshenbaum A D , Cahill J A , Mcgonigal P J , et al . The density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides[J]. Journal of Inorganic and Nuclear Chemistry, 1962, 24(10): 1287-1296. |
31 | Robelin C , Chartrand P , Eriksson G . A density model for multicomponent liquids based on the modified quasichemical model application to the NaCl-KCl-MgCl2-CaCl2 system[J]. Metallurgical and Material Transactions B, 2007, 38(6): 869-879. |
32 | Masuhlro M , Osamu O , Karutaka K . Sound velocity in heat transfer salt (mixture of molten NaNO3- KNO3-NaNO2, 7/44/49 mol %) studied by an ultrasonic pulse-echo method [J]. J. Chem. Eng. Data, 1981, 2: 411-413. |
[1] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[2] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[6] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[7] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[8] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[9] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[12] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[13] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[14] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[15] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||