化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1189-1201.DOI: 10.11949/0438-1157.20190975
王磊1,2(),陈玉婷1,2,徐燕燕1,2,3,叶爽1,2(),黄伟光1,2,3
收稿日期:
2019-08-30
修回日期:
2019-12-05
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
叶爽
作者简介:
王磊(1994—),男,硕士研究生,基金资助:
Lei WANG1,2(),Yuting CHEN1,2,Yanyan XU1,2,3,Shuang YE1,2(),Weiguang HUANG1,2,3
Received:
2019-08-30
Revised:
2019-12-05
Online:
2020-03-05
Published:
2020-03-05
Contact:
Shuang YE
摘要:
换热网络优化中不仅要考虑能量回收的“量”,还要考虑能量回收过程中“质”的耗散问题。在换热网络最大能量回收的前提下,基于不可逆传热过程中的耗散理论,以代表能量回收品质的效率最高为目标,建立综合能量回收数量、品质并同时考虑换热网络经济性的多目标混合整数非线性规划(MOMINLP)模型。根据模型目标有主次之分的特点,基于ε约束法对模型进行分步优化并结合BARON软件进行精确求解,依次求解换热网络的最大能量回收量(MER)与最低年均总成本(TAC),再将所得结果乘以松弛系数εi作为缩小搜索区域的约束条件,获得能量与成本约束下效率的Pareto前沿。通过对经典10SP1案例进行计算求解,最终得到最大能量回收量下,费用松弛系数为1.05时费效比最小的优化方案,而且本文的多目标约束优化方法能够更快求得综合的最优解。最后通过T-Q图中的换热网络组合曲线对比不同优化方案的效率,将换热网络划分为内部换热部分与剩余流股部分,多目标约束优化方法能够降低内部换热不可逆损失,提高剩余流股的温度。
中图分类号:
王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
Lei WANG, Yuting CHEN, Yanyan XU, Shuang YE, Weiguang HUANG. Multi-objective constrained optimization method for heat exchanger network considering comprehensive economy and entransy[J]. CIESC Journal, 2020, 71(3): 1189-1201.
流体 | 入口温度/K | 出口温度/K | 热容流率/(kW?K-1) |
---|---|---|---|
H1 | 433 | 366 | 8.79 |
H2 | 522 | 411 | 10.55 |
H3 | 500 | 339 | 14.77 |
H4 | 544 | 422 | 12.56 |
H5 | 472 | 339 | 17.73 |
C1 | 333 | 433 | 7.62 |
C2 | 389 | 495 | 6.08 |
C3 | 311 | 494 | 8.44 |
C4 | 355 | 450 | 17.28 |
C5 | 366 | 478 | 13.90 |
HU | 509 | 509 | — |
CU | 311 | 355 | — |
表1 10SP1问题的流股数据
Table 1 10SP1 problem data
流体 | 入口温度/K | 出口温度/K | 热容流率/(kW?K-1) |
---|---|---|---|
H1 | 433 | 366 | 8.79 |
H2 | 522 | 411 | 10.55 |
H3 | 500 | 339 | 14.77 |
H4 | 544 | 422 | 12.56 |
H5 | 472 | 339 | 17.73 |
C1 | 333 | 433 | 7.62 |
C2 | 389 | 495 | 6.08 |
C3 | 311 | 494 | 8.44 |
C4 | 355 | 450 | 17.28 |
C5 | 366 | 478 | 13.90 |
HU | 509 | 509 | — |
CU | 311 | 355 | — |
文献 | 搜索方法 | TACAMTD/USD | TAC*AMTD /USD | SE/(kW?K) | η | 计算时间④(CPU time)/s |
---|---|---|---|---|---|---|
Floudas | 弯曲分解方法 | 41406 | 41469.1 | 701813 | 0.732 | — |
Lewin | 遗传算法 | 40977.7 | 41028.1 | 712364 | 0.743 | — |
方法1① | BARON | 41007.2 | 41265.3 | 701624 | 0.731 | 1312.61 |
方法2② | ε约束法 | 40870 | 41001.9 | 699959 | 0.730 | 242.70 |
本文方法③ | ε约束法 | 42157.9 | 43289.2 | 740800 | 0.772 | 23.61 |
表2 几种方法的结果对比
Table 2 Comparison of results among several methods
文献 | 搜索方法 | TACAMTD/USD | TAC*AMTD /USD | SE/(kW?K) | η | 计算时间④(CPU time)/s |
---|---|---|---|---|---|---|
Floudas | 弯曲分解方法 | 41406 | 41469.1 | 701813 | 0.732 | — |
Lewin | 遗传算法 | 40977.7 | 41028.1 | 712364 | 0.743 | — |
方法1① | BARON | 41007.2 | 41265.3 | 701624 | 0.731 | 1312.61 |
方法2② | ε约束法 | 40870 | 41001.9 | 699959 | 0.730 | 242.70 |
本文方法③ | ε约束法 | 42157.9 | 43289.2 | 740800 | 0.772 | 23.61 |
1 | Jin Z L, Chen X T, Wang Y Q, et al. Heat exchanger network synthesis based on environmental impact minimization[J]. Clean Technologies & Environmental Policy, 2014, 16(1): 183-187. |
2 | 霍兆义, 尹洪超, 赵亮, 等. 国内换热网络综合方法研究进展与展望[J]. 化工进展, 2012, 31(4): 726-731. |
Huo Z Y, Yin H C, Zhao L, et al. Process and prospect for the methodology of heat exchanger network synthesis in China[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 726-731. | |
3 | Hwa C S. Mathematical formulation and optimization of heat exchanger networks using separable programming[C]//AIChE-IChemE Symposium Series 4. 1965: 101-106. |
4 | Furman K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2335-2370. |
5 | Hohmann E C. Optimum networks for heat exchanger[D]. Los Angeles: University of Southern California, 1971. |
6 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
7 | Asante N D K, Zhu X X. An automated and interactive approach for heat exchanger network retrofit[J]. Chemical Engineering Research & Design, 1997, 75(3): 349-360. |
8 | Yee T F, Grossmann I E. Simultaneous optimization models for heat integration(II): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
9 | Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration(III): Process and heat exchanger network optimization[J]. Computers and Chemical Engineering, 1990, 14(11): 1185-1200. |
10 | Ke F H, Al-Mutairi E M, Karimi I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing[J]. Chemical Engineering Science, 2012, 73(19): 30-43. |
11 | 胡向柏, 崔国民, 涂惟民. 复杂换热网络中的非线性特性分析[J]. 工程热物理学报, 2012, V33(2): 285-287. |
Hu X B, Cui G M, Tu W M. The non-linear characteristics analyze of the minlp in the complex heat exchanger networks[J] Journal of Engineering Thermophysics, 2012, V33(2): 285-287. | |
12 | Escobar M, Trierweiler J O, Grossmann I E. Simultaneous synthesis of heat exchanger networks with operability considerations: flexibility and controllability[J]. Computers & Chemical Engineering, 2013, 55(32): 158-180. |
13 | Pavão L V, Pozo C, Costa C B B, et al. Financial risks management of heat exchanger networks under uncertain utility costs via multi-objective optimization[J]. Energy, 2017, 139: 98-117. |
14 | Pavão L V, Costa C B B, Ravagnani M a S S, et al. Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach[J]. Applied Energy, 2017, 203(1): 304-320. |
15 | Kang L, Liu Y. Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control[J]. Applied Energy, 2015, 154(1): 696-708. |
16 | 李帅龙, 崔国民, 周剑卫. 基于温差均匀性因子协进化的双层算法同步优化换热网络[J]. 热能动力工程, 2017, 32(7): 17-23. |
Li S L, Cui G M, Zhou J W, Synchronization algorithm optimization bilayer uniform temperature difference factor of the heat exchanger network based co-evolution[J]. Thermal & Power Engineering, 2017, 32 (7): 17-23. | |
17 | Hamsani M N, Walmsley T G, Liew P Y, et al. Combined pinch and exergy numerical analysis for low temperature heat exchanger network[J]. Energy, 2018, 153: 100-112. |
18 | Cheng X T, Liang X. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks[J]. Applied Thermal Engineering, 2013, 59(1/2): 87-93. |
19 | 过增元, 梁新刚, 朱宏晔. ——描述物体传递热量能力的物理量[J]. 自然科学进展, 2006, 16(10): 1288-1296. |
Guo Z Y, Liang X G, Zhu H Y. Entransy-- a physical quantity describing the ability of an object to transfer heat[J]. Progress in Natural Science, 2006, 16(10): 1288-1296. | |
20 | Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer — a review and update[J]. International Journal of Heat & Mass Transfer, 2013, 63(15): 65-81. |
21 | 李林, 蒋宁, 盛颂恩, 等. 基于损耗的换热网络优化方法研究进展[J]. 轻工机械, 2011, 1(3): 117-121. |
Li L, Jiang N, Sheng S E, et al. Research progress on optimization method of heat exchanger network based on entransy[J]. Light Industry Machinery, 2011, 1(3): 117-121. | |
22 | 徐燕燕, 叶爽, 黄伟光. 基于当量热阻的ORC工质选择方法研究[J]. 工程热物理学报, 2018, 39(1): 23-30. |
Xu Y Y, Ye S, Huang W G. A method of selecting working fluid and operation conditions at once in an ORC(organic rankine cycle)[J]. Journal of Engineering Thermophysics, 2018, 39(1): 23-30. | |
23 | 陈玉婷, 徐燕燕, 王磊, 等. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733. |
Chen Y T, Xu Y Y, Wang L, et al. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system[J]. CIESC Journal, 2019, 70(5): 1723-1733. | |
24 | 柳雄斌, 孟继安, 过增元. 换热器参数优化中的熵产极值和耗散极值[J]. 科学通报, 2008, 53(24): 3026-3029. |
Liu X B, Meng J A, Guo Z Y. Entropy production extreme value and entransy dissipation extreme value in heat exchanger parameter optimization[J]. Chinese Science Bulletin, 2008, 53(24): 3026-3029. | |
25 | Zhang T, Liu X, Tang H, et al. Exergy and entransy analyses in air-conditioning system (Ι): Similarity and distinction[J]. Energy and Buildings, 2016, 128: 876-885. |
26 | Lewin D R. A generalized method for HEN synthesis using stochastic optimization(II): The synthesis of cost-optimal networks[J]. Computers & Chemical Engineering, 1998, 22(10): 1387-1405. |
27 | 张亚辉, 胡小锋, 吴传珣. 基于ε-约束法的多目标双边装配线再平衡问题[J]. 计算机集成制造系统, 2016, 22(11): 2551-2562. |
Zhang Y H, Hu X F, Wu C X. Multi-objective two-sided assembly line rebalancing problem based on ε-constraint method[J]. Computer Integrated Manufacturing Systems, 2016, 22(11): 2551-2562. | |
28 | Laukkanen T, Tveit T M, Ojalehto V, et al. An interactive multi-objective approach to heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2010, 34(6): 943-952. |
29 | 林露. 基于非支配排序遗传算法的换热网络多目标优化[D]. 杭州: 浙江工业大学, 2013. |
Lin L. Multi-objective optimization of heat exchanger networks based on non-dominated sorting genetic algorithm[D]. Hangzhou: Zhejiang University of Technology, 2013. | |
30 | Powell W B. A unified framework for stochastic optimization[J]. European Journal of Operational Research, 2019, 275(3): 795-821. |
31 | Chen Q, Xu Y C, Guo Z Y. The property diagram in heat transfer and its applications[J]. Science Bulletin, 2012, 57(35): 4646-4652. |
32 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. |
Yang S M, Tao W Q. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. | |
33 | Chen J J J. Comments on improvements on a replacement for the logarithmic mean[J]. Chemical Engineering Science, 1987, 42(10): 2488-2489. |
34 | 彭富裕, 崔国民, 陈家星. 基于模拟退火算法的换热网络双层优化方法[J]. 石油化工, 2014, 43(5): 536-544. |
Peng F Y, Cui G M, Chen J X. Bilevel optimization method for heat exchanger network synthesis based on simulated annealing algorithm[J]. Petrochemical Technology, 2014, 43(5): 536-544. | |
35 | 刘璞, 崔国民, 肖媛. 具有步长调整策略的强制进化随机游走算法优化换热网络[J]. 化工进展, 2017, 36(2): 442-450. |
Liu P, Cui G M, Xiao Y. Optimizing heat exchanger network by random walking algorithm with compulsive evolution combined with step length adjustment strategy[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 442-450. | |
36 | Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut approach to global optimization[J]. Mathematical Programming, 2005, 103(2): 225-249. |
37 | Pho T K, Lapidus L. Topics in computer-aided design(Ⅱ): Synthesis of optimal heat exchanger networks by tree searching algorithms [J]. AIChE Journal, 1973, 19(6): 1182-1189. |
38 | 温卿云, 罗行, 杨杉杉, 等. 换热器网络综合优化10SP1问题的研究[C]//传热传质学学术会议, 2007. |
Wen Q Y, Luo X, Yang S S, et al. Research on 10SP1 problem of comprehensive optimization of heat exchanger network[C]//Heat and Mass Transfer Conference, 2007. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[9] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[10] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[11] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[12] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[13] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[14] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[15] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||