化工学报 ›› 2020, Vol. 71 ›› Issue (2): 459-474.DOI: 10.11949/0438-1157.20190728
收稿日期:
2019-06-27
修回日期:
2019-11-22
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
龚俊波,汤伟伟
作者简介:
赵绍磊(1994—),男,硕士研究生, 基金资助:
Shaolei ZHAO(),Yaoguo WANG,Teng ZHANG,Lina ZHOU,Junbo GONG(),Weiwei TANG()
Received:
2019-06-27
Revised:
2019-11-22
Online:
2020-02-05
Published:
2020-02-05
Contact:
Junbo GONG,Weiwei TANG
摘要:
结晶作为固-液分离的重要手段,是实现医药产品高端高值化的关键技术。药物结晶过程的精准控制决定了晶体产品的多晶型、晶习、粒度及粒度分布等诸多特性,对生产效率和产品质量的提升具有重要的意义。基于国内外对药物结晶过程控制的研究现状,结合相关案例,系统总结了制药结晶中先进过程控制的理论模型、监测手段和控制策略,重点分析讨论了过程控制在产品工程中的应用并对其发展趋势进行了展望。
中图分类号:
赵绍磊, 王耀国, 张腾, 周丽娜, 龚俊波, 汤伟伟. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474.
Shaolei ZHAO, Yaoguo WANG, Teng ZHANG, Lina ZHOU, Junbo GONG, Weiwei TANG. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474.
1 | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69( 11): 4505- 4517. |
Gong J B, Sun J, Wang J K. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69( 11): 4505- 4517. | |
2 | Nagy Z K, Fevotte G, Kramer H, et al. Recent advances in the monitoring, modelling and control of crystallization systems[J]. Chemical Engineering Research & Design, 2013, 91 ( 10): 1903- 1922. |
3 | Braatz R D. Advanced control of crystallization processes[J]. Annu. Rev. Control, 2002, 26: 87- 99. |
4 | Nagy Z K, Braatz R D. Advances and new directions in crystallization control[M]//Annual Review of Chemical and Biomolecular Engineering: Vol. 3. Palo Alto, 2012: 55- 75. |
5 | Gao Z G, Rohani S, Gong J B, et al. Recent developments in the crystallization process: toward the pharmaceutical industry[J]. Engineering, 2017, 3 ( 3): 343- 353. |
6 | Hulburt H M, Katz S. Some problems in particle technology: a statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19( 8): 555- 574. |
7 | Randolph A D, Larson M A. Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization[M]. New York: Academic Press, 1971. |
8 | Solsvik J, Jakobsen H A. The foundation of the population balance equation: a review [J]. J . Dispersion Sci. Technol., 2015, 36( 4): 510- 520. |
9 | Ramkrishna D. Population Balances. Theory and Applications to Particulate Systems in Engineering[M]. New York: Academic Press, 2000. |
10 | Ma C Y, Liu J J, Wang X Z. Measurement, modelling, and closed-loop control of crystal shape distribution: literature review and future perspectives[J]. Particuology, 2016, 26: 1- 18. |
11 | Aamir E, Nagy Z K, Rielly C D, et al. Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modeling and crystal size distribution control of crystallization processes[J]. Industrial & Engineering Chemistry Research, 2009, 48: 8575- 8584. |
12 | Motz S, Mannal S, Gilles E D. State estimation in batch crystallization using reduced population models[J]. Journal of Process Control, 2008, 18: 361- 374. |
13 | Fevotte F, Fevotte G. A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes[J]. Chemical Engineering Science, 2010, 65: 3191- 3198. |
14 | Mubeen ur Rehman S, Qamar S. Application of the method of characteristics to population balance models considering growth and nucleation phenomena[J]. Applied Mathematics, 2014, 5: 1853- 1862. |
15 | Haseltine E L, Patience D B, Rawlings J B. On the stochastic simulation of particulate systems[J]. Chemical Engineering Science, 2005, 60: 2627- 2641. |
16 | Rosner D E, McGraw R, Tandon P. Multivariate population balances via moment and Monte Carlo simulation methods: an important sol reaction engineering bivariate example and mixed moments for the estimation of deposition, scavenging, and optical properties for populations of nonspherical suspended particles [J]. Industrial & Engineering Chemistry Research, 2003, 42: 2699- 2711. |
17 | Hermanto M W, Braatz R D, Chiu, M S. High-order simulation of polymorphic crystallization using weighted essentially nonoscillatory methods[J]. AIChE Journal, 2009, 55: 122- 131. |
18 | Majumder A, Kariwala V, Ansumali S, et al. Fast high-resolution method for solving multidimensional population balances in crystallization[J]. Industrial & Engineering Chemistry Research, 2010, 49: 3862- 3872. |
19 | Wan J, Wang X Z, Ma C Y. Particle shape manipulation and optimization in cooling crystallization involving multiple crystal morphological forms[J]. AIChE Journal, 2009, 55: 2049- 2061. |
20 | Attarakih M M, Drumm C, Bart H. Solution of the population balance equation using the sectional quadrature method of moments (SQMOM)[J]. Chemical Engineering Science, 2009, 64: 742- 752. |
21 | Qamar S, Ashfaq A, Warnecke G, et al. Adaptive high-resolution schemes for multi-dimensional population balances in crystallization processes[J]. Computers & Chemical Engineering, 2007, 31: 1296- 1311. |
22 | Wang T, Lu H J, Wang J K, et al. Recent progress of continuous crystallization[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 14- 29. |
23 | Fevotte F, Fevotte G. A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes[J]. Chemical Engineering Science, 2010, 65 ( 10): 3191- 3198. |
24 | FDA. PAT guidance for industry—a framework for innovative pharmaceutical development, manufacturing and quality assurance [ EB/OL]. 2004. . |
25 | Yu L X, Lionberger R A, Raw A S, et al. Applications of process analytical technology to crystallization processes[J]. Adv. Drug Delivery Rev., 2003, 56: 349- 369. |
26 | Kadam S S, Windt E V D, Daudey P J, et al. A comparative study of ATR-FTIR and FT-NIR spectroscopy for in-situ concentration monitoring during batch cooling crystallization processes [J]. Crystal Growth & Design, 2010, 10( 6): 2629- 2640. |
27 | Saleemi A, Rielly C, Nagy Z K. Automated direct nucleation control for in situ dynamic fines removal in batch cooling crystallization [J]. Crystengcomm, 2012, 14( 6): 2196- 2203. |
28 | Simone E, Saleemi A N, Nagy Z K. In situ monitoring of polymorphic transformations using a composite sensor array of Raman, NIR, and ATR-UV/vis spectroscopy, FBRM, and PVM for an intelligent decision support system [J]. Organic Process Research & Development, 2015, 19( 1): 167- 177. |
29 | Zhou G, Moment A, Cuff J, et al. Process development and control with recent new FBRM, PVM, and IR[J]. Organic Process Research & Development, 2015, 19( 1): 227- 235. |
30 | Simone E, Saleemi A N, Nagy Z K. Raman, UV, NIR, and Mid-IR spectroscopy with focused beam reflectance measurement in monitoring polymorphic transformations[J]. Chem. Eng. Technol., 2014, 37( 8): 1305- 1313. |
31 | Simon L L, Nagy Z K, Hungerbuhler K. Comparison of external bulk video imaging with focused beam reflectance measurement and ultra-violet visible spectroscopy for metastable zone identification in food and pharmaceutical crystallization processes[J]. Chemical Engineering Science, 2009, 64( 14): 3344- 3351. |
32 | Powell K A, Croker D M, Rielly C D, et al. PAT-based design of agrochemical co-crystallization processes: a case-study for the selective crystallization of 1∶1 and 3∶2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide [J]. Chemical Engineering Science, 2016, 152: 95- 108. |
33 | Pena R, Nagy Z K. Process intensification through continuous spherical crystallization using a two-stage mixed suspension mixed product removal(MSMPR) system[J]. Crystal Growth & Design, 2015, 15( 9): 4225- 4236. |
34 | Liu W, Wei H, Zhao J, et al. Investigation into the cooling crystallization and transformations of carbamazepine using in situ FBRM and PVM [J]. Organic Process Research & Development, 2013, 17( 11): 1406- 1412. |
35 | Luo Y, Tu Y, Ge J, et al. Monitoring the crystallization process of methylprednisolone hemisuccinate(MPHS) from ethanol solution by combined ATR-FTIR-FBRM-PVM[J]. Separation Science & Technology, 2013, 48( 12): 1881- 1890. |
36 | Klapwijk A R, Simone E, Nagy Z K, et al. Tuning crystal morphology of succinic acid using a polymer additive[J]. Crystal Growth & Design, 2016, 16( 8): 4349- 4359. |
37 | Simone E, Saleemi A N, Nagy Z K. Application of quantitative Raman spectroscopy for the monitoring of polymorphic transformation in crystallization processes using a good calibration practice procedure[J]. Chemical Engineering Research & Design, 2014, 92( 4): 594- 611. |
38 | Nagy Z K, Braatz R D. Monitoring and advanced control of crystallisation processes[M]//The Handbook of Industrial Crystallization. Cambridge: Cambridge Univ. Press, 2012. |
39 | Rawlings J B, Sink C W, Miller S M. Control of crystallization processes[M]//Handbook of Industrial Crystallization. 2nd ed. Boston: Butterworth-Heinemann, 2002. |
40 | Ferguson S, Morris G, Hao H, et al. In-situ monitoring and characterization of plug flow crystallizers [J]. Chem. Eng. Sci., 2012, 77: 105- 111. |
41 | Corriou J P, Rohani S. A new look at optimal control of a batch crystallizer[J]. AIChE J., 2008, 54: 3188- 3206. |
42 | Woo X Y, Tan R B H, Chow P S, et al. Simulation of mixing effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach[J]. Cryst. Growth Des., 2006, 6: 1291- 1303. |
43 | Nagy Z K, Fujiwara M, Braatz R D. Modelling and control of combined cooling and antisolvent crystallization processes[J]. J . Process Contr., 2008, 18( 9): 856- 864. |
44 | Aamir E, Rielly C D, Nagy Z K. Experimental evaluation of the targeted direct design of temperature trajectories for growth-dominated crystallization processes using an analytical crystal size distribution estimator[J]. Ind. Eng. Chem. Res., 2012, 51 ( 51): 16677- 16687. |
45 | Mullin J W, Nyvlt J. Programmed cooling of batch crystallizers[J]. Chem. Eng. Sci., 1971, 26 ( 3): 369- 377. |
46 | Jones A G, Mullin J W. Programmed cooling crystallization of potassium sulphate solutions[J]. Chem. Eng. Sci., 1974, 29( 1): 105- 118. |
47 | Worlitschek J, Mazzotti M. Model-based optimization of particle size distribution in batch-cooling crystallization of paracetamol[J]. Cryst. Growth Des., 2004, 4: 891- 903. |
48 | Aamir E, Nagy Z K, Rielly C D, et al. Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modelling and crystal size distribution control of crystallization processes[J]. Ind. Eng. Chem. Res., 2009, 48 ( 18): 8575- 8584. |
49 | Mesbah A, Huesman A E M, Kramer H J M, et al. A comparison of nonlinear observers for output feedback model-based control of seeded batch crystallization processes[J]. J . Process Control, 2011, 21 ( 4): 652- 666. |
50 | Mesbah A, Huesman A E M, Kramer H J M, et al. Real-time control of seeded batch crystallization processes[J]. AIChE J., 2011, 57: 1557- 1569. |
51 | Aamir E, Nagy Z K, Rielly C D. Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes[J]. Cryst. Growth Des., 2010, 10: 4728- 4740. |
52 | Nagy Z K, Braatz R D. Worst-case and distributional robustness analysis of finite-time control trajectories for nonlinear distributed parameter systems[J]. IEEE Trans. Control Syst. Technol., 2003, 11: 694- 704. |
53 | Nagy Z K, Fujiwara M, Woo X Y, et al. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments[J]. Ind. Eng. Chem. Res., 2008, 47: 1245- 1252. |
54 | Fujiwara M, Nagy Z K, Chew J W, et al. First-principles and direct design approaches for the control of pharmaceutical crystallization[J]. J. Process Control, 2005, 15: 493- 504. |
55 | Nagy Z K, Chew J W, Fujiwara M, et al. Comparative performance of concentration and temperature controlled crystallizations[J]. J. Process Control, 2008, 18: 399- 407. |
56 | Fujiwara M, Chow P S, Ma D L, et al. Paracetamol crystallization using laser backscattering and ATR-FTIR spectroscopy: metastability, agglomeration and control[J]. Cryst. Growth Des., 2002, 2: 363- 370. |
57 | Cote A, Zhou G, Stanik M. A novel crystallization methodology to ensure isolation of the most stable crystal form[J]. Org. Process Res. Dev., 2009, 13: 1276- 1283. |
58 | Zhou G X, Fujiwara M, Woo X Y, et al. Direct design of pharmaceutical antisolvent crystallization through concentration control[J]. Cryst. Growth Des., 2006, 6: 892- 898. |
59 | Simon L L, Pataki H, Marosi G, et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review[J]. Organic Process Research & Development, 2015, 19 ( 1): 3- 62. |
60 | Kee N C S, Tan R B H, Braatz R D. Selective crystallization of the metastable α-form of L-glutamic acid using concentration feedback control[J]. Cryst. Growth Des., 2009, 9: 3044- 3051. |
61 | Saleemi A, Rielly C, Nagy Z K. Comparative investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/Vis spectroscopy and FBRM[J]. Cryst. Growth Des., 2012, 12: 1792- 1807. |
62 | Nagy Z K, Fujiwara M, Braatz R D. Modelling and control of combined cooling and antisolvent crystallization processes[J]. J. Process Control, 2008, 18: 856. |
63 | Nagy Z K, Chew J W, Fujiwara M, et al. Comparative performance of concentration and temperature controlled batch crystallizations[J]. J. Process Control, 2008, 18: 399. |
64 | Bakar M R A, Nagy Z K, Saleemi A N, et al. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes[J]. Cryst. Growth Des., 2009, 9: 1378- 1384. |
65 | Saleemi A N, Steele G, Pedge N I, et al. Enhancing crystalline properties of a cardiovascular active pharmaceutical ingredient using a process analytical technology based crystallization feedback control strategy[J]. Int. J . Pharm., 2012, 430: 56. |
66 | Doki N, Seki H, Takano K, et al. Process control of seeded batch cooling crystallization of the metastable α-form glycine using an in-situ ATR-FTIR spectrometer and an in-situ FBRM particle counter [J]. Cryst. Growth Des., 2004, 4: 949- 953. |
67 | Bakar M R A, Nagy Z K, Rielly C D. Seeded batch cooling crystallization with temperature cycling for the control of size uniformity and polymorphic purity of sulfathiazole crystals[J]. Org. Process Res. Dev., 2009, 13: 1343. |
68 | Bakar M R A, Nagy Z K, Rielly C D. Investigation of the effect of temperature cycling on surface features of sulfathiazole crystals during seeded batch cooling crystallization[J]. Cryst. Growth Des., 2010, 10: 3892. |
69 | Saleemi A, Nagy Z K, Rielly C. Application of direct nucleation control approach on laboratory and pilot scale crystallisation using FBRM[C]//Proc. Int. Workshop Ind. Cryst., 17th, Halle-Wittenberg, Germany. Göttingen, Ger.: Cuvillier Verlag, 2010. |
70 | Zhang D J, Xu S J, Du S C, et al. Progress of pharmaceutical continuous crystallization[J]. Engineering, 2017, 3 ( 3): 354- 364. |
71 | Veintemillas-Verdaguer S. Chemical aspects of the effect of impurities in crystal growth[J]. Prog. Cryst. Growth Charact. Mater., 1996, 32 ( 1): 75- 109. |
72 | Darmali C, Mansouri S, Yazdanpanah N, et al. Mechanisms and control of impurities in continuous crystallization: a review[J]. Industrial & Engineering Chemistry Research, 2019, 58( 4): 1463- 1479. |
73 | Simone E, Zhang W, Nagy Z K. Application of process analytical technology-based feedback control strategies to improve purity and size distribution in biopharmaceutical crystallization[J]. Cryst. Growth Des., 2015, 15( 6): 2908- 2919. |
74 | Saleemi A N, Steele G, Pedge N I, et al. Enhancing crystalline properties of a cardiovascular active pharmaceutical ingredient using a process analytical technology based crystallization feedback control strategy[J]. International Journal of Pharmaceutics, 2012, 430( 1/2): 56- 64. |
75 | Nagy Z K. Model based robust control approach for batch crystallization product design[J]. Comput. Chem. Eng., 2009, 33: 1685- 1691. |
76 | Ghadipasha N, Romagnoli J A, Tronci S, et al. A model-based approach for controlling particle size distribution in combined cooling-antisolvent crystallization processes[J]. Chemical Engineering Science, 2018, 190: 260- 272. |
77 | Borchert C, Temmel E, Eisenschmidt H, et al. Image-based in situ identification of face specific crystal growth rates from crystal populations[J]. Crystal Growth & Design, 2014, 14: 952- 971. |
78 | Alatalo H, Hatakka H, Louhi-Kultanen M, et al. Closed-loop control of reactive crystallization(Ⅰ): Supersaturation-controlled crystallization of L-glutamic acid[J]. Chemical Engineering & Technology, 2010, 33: 743- 750. |
79 | Cruz-Cabeza A J, Reutzel-Edens S M, Bernstein J. Facts and fictions about polymorphism[J]. Chemical Society Reviews, 2015, 44( 23): 8619- 8635. |
80 | Kee N C, Tan R B, Braatz R D. Selective crystallization of the metastable alpha-form of L-glutamic acid using concentration feedback control[J]. Cryst, Growth Des., 2009, 9: 3044. |
81 | Hermanto M W, Chiu M S, Braatz R D. Nonlinear model predictive control for the polymorphic transformation of L-glutamic acid crystals[J]. AIChE J., 2009, 55( 10): 2631- 2645. |
82 | Howard K S, Nagy Z K, Saha B, et al. A process analytical technology based investigation of the polymorphic transformations during the anti-solvent crystallization of sodium benzoate from IPA/water mixture[J]. Cryst. Growth Des., 2009, 9: 3964- 3975. |
83 | Qamar S, Noor S, Seidel-Morgenstern A. An efficient numerical method for solving a model describing crystallization of polymorphs[J]. Ind. Eng. Chem. Res., 2010, 49: 4940- 4947. |
84 | Hermanto M W, Braatz R D, Chiu M S. Integrated batch-to-batch and nonlinear model predictive control for polymorphic crystallization in pharmaceutical crystallization[J]. AIChE J., 2011, 57: 1008- 1019. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[4] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[5] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[6] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[7] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[8] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[9] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[10] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[11] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
[12] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[13] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[14] | 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO |
[15] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||