化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2035-2048.DOI: 10.11949/0438-1157.20191431
收稿日期:
2019-11-25
修回日期:
2020-02-20
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
王敏,杨晓帆
作者简介:
王敏(1986—),男,博士后,基金资助:
Min WANG1(),Qianqian SHAO2,Xiaofan YANG3(),Jingfa LI4
Received:
2019-11-25
Revised:
2020-02-20
Online:
2020-05-05
Published:
2020-05-05
Contact:
Min WANG,Xiaofan YANG
摘要:
利用盘管组来加热融化浮顶油罐内含蜡原油是油罐加热融化的主要方式之一。而优化盘管组的布置方式对提高罐内含蜡原油的融化效率、降低生产成本具有重要的意义。基于此,在考虑含蜡原油融化过程中形态和流变性变化的基础上,建立了盘管组加热的浮顶油罐内含蜡原油湍流融化物理数学模型。考虑到罐顶空气层、钢板层、保温层的规则性以及罐内含蜡原油区域的非规则性,利用浸入边界法在结构化网格上处理罐内含蜡原油与盘管组之间的耦合问题。利用文献结果对模型进行验证。以实际1000 m3浮顶油罐为例,对罐内含蜡原油的融化规律进行研究,并对倾角对融化过程的影响进行分析。
中图分类号:
王敏, 邵倩倩, 杨晓帆, 李敬法. 盘管组倾角对浮顶油罐内含蜡原油融化过程的影响研究[J]. 化工学报, 2020, 71(5): 2035-2048.
Min WANG, Qianqian SHAO, Xiaofan YANG, Jingfa LI. Study on influence of inclination of coils on melting process of waxy crude oil in a floating roof tank[J]. CIESC Journal, 2020, 71(5): 2035-2048.
算例 | 盘管数 | p3 | δr / m | θ /(°) | r0 / m | T0 /℃ | |
---|---|---|---|---|---|---|---|
x3 / m | r3 / m | ||||||
1 | 5 | 0.6 | 3.0 | 0.6 | -5.71 | 0.1 | 80 |
2 | 5 | 0.6 | 3.0 | 0.6 | 0 | 0.1 | 80 |
3 | 5 | 0.6 | 3.0 | 0.6 | 5.71 | 0.1 | 80 |
表1 三种盘管组倾角
Table 1 Three inclinations of heating coils at tank bottom
算例 | 盘管数 | p3 | δr / m | θ /(°) | r0 / m | T0 /℃ | |
---|---|---|---|---|---|---|---|
x3 / m | r3 / m | ||||||
1 | 5 | 0.6 | 3.0 | 0.6 | -5.71 | 0.1 | 80 |
2 | 5 | 0.6 | 3.0 | 0.6 | 0 | 0.1 | 80 |
3 | 5 | 0.6 | 3.0 | 0.6 | 5.71 | 0.1 | 80 |
材料 | ρ /(kg/m3) | cp /(J/(kg·℃) ) | λ /(W/(m·℃) ) | β /℃-1 | μ /(Pa·s) | L/(J/kg) |
---|---|---|---|---|---|---|
含蜡原油 | 869 | 2100 | 0.14 | 7.53×10-4 | 式(14) | 2.0×105 |
空气 | 1.25 | 1009 | 0.025 | 3.7×10-3 | 1.77×10-5 | — |
蜡晶 | 869 | 2100 | 0.14 | — | +∞ | 2.0×105 |
钢板 | 7860 | 475 | 46 | — | +∞ | — |
土壤 | 1700 | 753 | 1.6 | — | +∞ | — |
保温层 | 55 | 1880 | 0.02 | — | +∞ | — |
表2 含蜡原油、空气、蜡晶、钢板、土壤和保温层热物性参数
Table 2 Physical properties of waxy crude oil, air layer, wax crystal, steel layer, soil and insulating layer
材料 | ρ /(kg/m3) | cp /(J/(kg·℃) ) | λ /(W/(m·℃) ) | β /℃-1 | μ /(Pa·s) | L/(J/kg) |
---|---|---|---|---|---|---|
含蜡原油 | 869 | 2100 | 0.14 | 7.53×10-4 | 式(14) | 2.0×105 |
空气 | 1.25 | 1009 | 0.025 | 3.7×10-3 | 1.77×10-5 | — |
蜡晶 | 869 | 2100 | 0.14 | — | +∞ | 2.0×105 |
钢板 | 7860 | 475 | 46 | — | +∞ | — |
土壤 | 1700 | 753 | 1.6 | — | +∞ | — |
保温层 | 55 | 1880 | 0.02 | — | +∞ | — |
Ra | 项目 | 稳态热流量/J | ||
---|---|---|---|---|
r/l=0.1 | r/l=0.2 | r/l=0.3 | ||
1.0×104 | 本文计算结果 | 2.074 | 3.156 | 5.242 |
Ref. [ | 2.051 | 3.161 | 5.303 | |
Ref. [ | 2.071 | 3.331 | 5.826 | |
1.0×105 | 本文计算结果 | 3.701 | 4.861 | 6.119 |
Ref. [ | 3.704 | 4.836 | 6.171 | |
Ref. [ | 3.825 | 5.080 | 6.212 | |
1.0×106 | 本文计算结果 | 6.403 | 9.459 | 11.892 |
Ref. [ | 5.944 | 8.546 | 11.857 | |
Ref. [ | 6.107 | 9.374 | 11.620 |
表3 方腔内圆管恒壁温加热的稳定热流量
Table 3 Steady heat flux of heating coil in a square cavity heated with constant temperature
Ra | 项目 | 稳态热流量/J | ||
---|---|---|---|---|
r/l=0.1 | r/l=0.2 | r/l=0.3 | ||
1.0×104 | 本文计算结果 | 2.074 | 3.156 | 5.242 |
Ref. [ | 2.051 | 3.161 | 5.303 | |
Ref. [ | 2.071 | 3.331 | 5.826 | |
1.0×105 | 本文计算结果 | 3.701 | 4.861 | 6.119 |
Ref. [ | 3.704 | 4.836 | 6.171 | |
Ref. [ | 3.825 | 5.080 | 6.212 | |
1.0×106 | 本文计算结果 | 6.403 | 9.459 | 11.892 |
Ref. [ | 5.944 | 8.546 | 11.857 | |
Ref. [ | 6.107 | 9.374 | 11.620 |
1 | 杨筱蘅. 输油管道设计与管理[M]. 东营: 中国石油大学出版社, 2006. |
Yang X H. Design and Management of Oil Pipeline[M]. Dongying: Press of China University of Petroleum, 2006. | |
2 | Magazinovic G. Vertical arrangement of coils for efficient cargo tank heating[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 662-670. |
3 | Sun W, Cheng Q L, Li Z D, et al. Study on coil optimization on the basis of heating effect and effective energy evaluation during oil storage process[J]. Energy, 2019, 185: 505-520. |
4 | Sun W, Cheng Q L, Zheng A B, et al. Heat flow coupling characteristics analysis and heating effect evaluation study of crude oil in the storage tank different structure coil heating processes[J]. International Journal of Heat and Mass Transfer, 2018, 127: 89-101. |
5 | Zhao J, Dong H, Wang X L, et al. Research on heat transfer characteristic of crude oil during the tubular heating process in the floating roof tank[J]. Case Studies in Thermal Engineering, 2017, 10: 142-153. |
6 | 孙巍. 原油罐储过程传热与流动特性描述及有效能利用评价研究[D]. 大庆: 东北石油大学, 2017. |
Sun W. Research on the description of heat transfer and flow characteristics and the evaluation of effective energy utilization in the crude oil tank[D]. Daqing: Northeast Petroleum University, 2017. | |
7 | 陆雅红, 吴江涛. 原油储罐盘管式蒸汽加热器优化设计[J]. 化学工程, 2010, 38(10): 69-72. |
Lu Y H, Wu J T. Optimum design for coil steam heater of crude oil tank[J]. Chemical Engineering (China), 2010, 38(10): 69-72. | |
8 | 刘凤荣. 不同加热方式下储罐内原油传热特性研究[D]. 大庆: 东北石油大学, 2017. |
Liu F R. Study on heat-transfer characteristics of crude oil in storage tank under different heating modes[D]. Daqing: Northeast Petroleum University, 2017. | |
9 | Saifed-Din F, Tarik B, Tarik K, et al. Experimental study and CFD thermal assessment of horizontal hot water storage tank integrating evacuated tube collectors with heat pipes[J]. Solar Energy, 2018, 170: 234-251. |
10 | 刘佳, 侯磊, 陈雪娇. 10×104 m3浮顶罐罐壁附近原油温度分布数值模拟[J]. 油气储运, 2015, 34(3): 248-253. |
Liu J, Hou L, Chen X J. Numerical simulation of crude oil temperature distribution near the tank wall of 10×104 m3 floating-roof tank[J]. Oil & Gas Storage and Transportation, 2015, 34(3): 248-253. | |
11 | Kuznetsova S A. Numerical modeling of heat transfer in the fuel oil storage tank at thermal power plant[J]. EPJ Web of Conferences, 2015, 82: 1-5. |
12 | Kuznetsova S A, Maksimov V I. Heat transfer in fuel oil storage tank at thermal power plants with local fuel heating[J]. MATEC Web of Conference, 2015, 23: 1-4. |
13 | Wang M, Yu G J, Zhang X Y, et al. Numerical investigation of melting of the waxy crude oil in an oil tank[J]. Applied Thermal Engineering, 2017, 115: 81-90. |
14 | Ahmadi R, Hosseini S M J, Ranjbar A A, et al. Phase change in spiral coil heat storage systems[J]. Sustainable Cities and Society, 2018, 38: 145-157. |
15 | Zheng X J, Xie N, Chen C X, et al. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube[J]. Applied Thermal Engineering, 2018, 137: 164-172. |
16 | Bouhal T, Fertahi S D, Kousksou T, et al. CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources[J]. Journal of Energy Storage, 2018, 18: 360-370. |
17 | Wang G, Wei G, Xu C, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J].Applied Thermal Engineering, 2019, 147: 464-472. |
18 | 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008. |
Zhang Z S, Cui G X, Xu C X. Theory and Application of the Numerical Method of the Large Eddy Simulation Method[M]. Beijing: Tsinghua University Press, 2008. | |
19 | Enayati H, Chandy A J, Braun M J. Large eddy simulation (LES) calculations of natural convection in cylindrical enclosures with rack and seeds for crystal growth applications[J]. International Journal of Thermal Sciences, 2018, 123: 42-57. |
20 | Zhou B N, Yang M, Li Z, et al. Numerical simulations of forced convection across a single tube to evaluate applicability of the DNS, LES and RSM methods[J]. Applied Thermal Engineering, 2017, 123: 123-130. |
21 | Smagorinsky J. General circulation experiments with the primitive equations (Ⅰ): The basic experiment[J]. Monthly Weather Review, 1963, 91: 99-164. |
22 | Yang X H, Bai Q S, Guo Z X, et al. Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage[J]. Applied Energy, 2018, 229: 700-714. |
23 | Ren W W, Shu C, Wu J, et al. Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications[J]. Computers and Fluids, 2012, 57: 40-51. |
24 | Shu C, Zhu Y D. Efficient computation of natural convection in a concentric annulus between an outer square cylinder and inner circular cylinder[J]. International Journal for Numerical Methods in Fluids, 2002, 38: 429-445. |
25 | 王敏. 含蜡原油储罐内复杂传热规律的数值计算研究[D]. 北京: 中国石油大学(北京), 2017. |
Wang M. Numerical study on the complex heat transfer characteristics in the waxy crude oil tank[D]. Beijing: China University of Petroleum, Beijing, 2017. | |
26 | Wang Y. Reynolds stress model for viscoelastic drag-reducing flow induced by polymer solution[J]. Polymers, 2019, 11(10): 1659. |
27 | Wang Y, Wang Y, Cheng Z. Direct numerical simulation of gas-liquid drag-reducing cavity flow by the VOSET method[J]. Polymers, 2019, 11(596): 1-17. |
28 | Wang Y, Sun S Y, Gong L, et al. A globally mass-conservative method for dual-continuum gas reservoir simulation[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 301-316. |
29 | 李旺. 大型浮顶油罐温度场数值模拟方法及规律研究[D]. 北京: 中国石油大学(北京), 2013. |
Li W. Study on numerical simulation methods and regularities for temperature field of large floating roof oil tank[D]. Beijing: China University of Petroleum, Beijing, 2013. | |
30 | 方徐应. 秦皇岛10万立方米油罐低温储存规律研究[D]. 北京: 石油大学, 2003. |
Fang X Y. Study of oil storage at lower temperature in large floating roof tank of Qinhuangdao pump station[D]. Beijing: University of Petroleum, 2003. | |
31 | Moukalled F, Acharya S. Natural convection in the annulus between concentric horizontal circular and square cylinders[J]. Journal of Thermophysics and Heat Transfer, 1996, 10: 524-531. |
[1] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[2] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[3] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[4] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[5] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[6] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[7] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[8] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[9] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[10] | 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564. |
[11] | 陆威, 苗冉, 吴志根, 吴长春, 谢伟. 非牛顿流体在波节套管换热器中流动与换热的实验研究[J]. 化工学报, 2022, 73(7): 2924-2932. |
[12] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
[13] | 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426. |
[14] | 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963. |
[15] | 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||