化工学报 ›› 2020, Vol. 71 ›› Issue (2): 879-888.DOI: 10.11949/0438-1157.20191484
收稿日期:
2019-12-06
修回日期:
2020-01-03
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
刘明言
作者简介:
郭佳明(1993—),男,硕士研究生,
Jiaming GUO1(),Mingyan LIU1,2(
),Qiang WU1,Yongli MA1
Received:
2019-12-06
Revised:
2020-01-03
Online:
2020-02-05
Published:
2020-02-05
Contact:
Mingyan LIU
摘要:
钛系锂离子筛具有较高的锂吸附容量和稳定性,对其制备工艺及性能进行改进研究具有重要意义。使用硝酸锂和碳酸锂混合物作为锂源,与二氧化钛在500℃下进行固相反应,生成层状钛酸锂;使用0.2 mol·L -1盐酸对其酸洗24 h,得到了锂离子筛吸附剂;采用X射线衍射、扫描电镜、粒度分析、N 2吸附-脱附方法等,对其性能进行了表征;通过锂离子的吸附实验,确定了吸附和再生性能;探究了该新型吸附剂的锂离子吸附机理。结果表明:吸附过程是单分子层化学吸附;经过改性,离子筛颗粒更加细小,孔体积和比表面积更大,结构完整;在70 mg·L -1的Li +溶液中,吸附量为25.01 mg·g -1,准二级吸附速率常数为0.2762 g·(mg·h) -1,吸附速率较之未改性提高了54.56%;该离子筛对浓度为11.6 mg·L -1的Li +溶液,其锂去除率可以达到99.77%。
中图分类号:
郭佳明, 刘明言, 吴强, 马永丽. 硝酸锂改性钛系离子筛的制备及其吸附性能[J]. 化工学报, 2020, 71(2): 879-888.
Jiaming GUO, Mingyan LIU, Qiang WU, Yongli MA. Preparation and adsorption performance of titanium based lithium ion sieve improved by LiNO 3[J]. CIESC Journal, 2020, 71(2): 879-888.
离子筛 | 一级动力学 | 二级动力学 | ||||
---|---|---|---|---|---|---|
k1/h | qe1/ (mg·g -1) | R2 | k2/ g·(mg·h) -1 | qe2/ (mg·g -1) | R2 | |
改性前 | 1.587 | 14.51 | 0.9785 | 0.1787 | 15.23 | 0.9945 |
改性后 | 4.446 | 24.41 | 0.9771 | 0.2762 | 25.46 | 0.9909 |
表1 改性前后离子筛动力学参数
Table 1 Kinetics parameters of ion sieves before and after modification
离子筛 | 一级动力学 | 二级动力学 | ||||
---|---|---|---|---|---|---|
k1/h | qe1/ (mg·g -1) | R2 | k2/ g·(mg·h) -1 | qe2/ (mg·g -1) | R2 | |
改性前 | 1.587 | 14.51 | 0.9785 | 0.1787 | 15.23 | 0.9945 |
改性后 | 4.446 | 24.41 | 0.9771 | 0.2762 | 25.46 | 0.9909 |
离子筛 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
b | qm/ (mg·g -1) | R2 | n | Kf/ (mg·g -1) | R2 | |
改性前 | 0.3873 | 15.81 | 0.9988 | 12.82 | 10.64 | 0.9654 |
改性后 | 1.198 | 26.39 | 0.9997 | 10.88 | 17.68 | 0.9173 |
表2 改性前后离子筛吸附等温线参数
Table 2 Adsorption isotherms parameters of ion sieves before and after modification
离子筛 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
b | qm/ (mg·g -1) | R2 | n | Kf/ (mg·g -1) | R2 | |
改性前 | 0.3873 | 15.81 | 0.9988 | 12.82 | 10.64 | 0.9654 |
改性后 | 1.198 | 26.39 | 0.9997 | 10.88 | 17.68 | 0.9173 |
1 | Kim J, Kim H, Kang K. Conversion-based cathode materials for rechargeable sodium batteries[J]. Advanced Energy Materials, 2018, 8: 1702646. |
2 | Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48( 5): 55-69. |
3 | Yano J, Muroi T, Sakai S I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010—2030[J]. Material Cycles and Waste Management, 2016, 18( 4): 655-664. |
4 | Choubey P K, Kim M, Srivastava R R, et al. Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: From mineral and brine resources [J]. Minerals Engineering, 2016, 89: 119-137. |
5 | Choubey P K, Chung K S, Kim M S, et al. Advance review on the exploitation of the prominent energy-storage element: lithium. Part II: From sea water and spent lithium ion batteries (LIBs)[J]. Minerals Engineering, 2017, 110: 104-121. |
6 | Swain B. Recovery and recycling of lithium: a review [J]. Separation and Purification Technology, 2016, 172: 388-403. |
7 | Talens P L, Villalba M G, Ayres R U. Lithium: sources, production, uses, and recovery outlook [J]. JOM, 2013, 65( 8): 986-996. |
8 | Chen C W, Chen P A, Wei C J, et al. Lithium recovery with LiTi 2O 4 ion-sieves [J]. Marine Pollution Bulletin, 2017, 124: 1106-1110. |
9 | Wang S L, Zhang M, Zhang Y, et al. Application of citric acid as eluting medium for titanium type lithium ion sieve[J]. Hydrometallurgy, 2019, 183: 166-174. |
10 | Shi X C, Zhang Z B, Zhou D F, et al. Synthesis of Li + adsorbent (H 2TiO 3) and its adsorption properties [J]. Transactions of Nonferrous Metals Society of China, 2013, 23( 1): 253-259. |
11 | Chitrakar R, Makita Y, Ooi K, et al. Lithium recovery from salt lake brine by H 2TiO 3[J]. Dalton Transactions, 2014, 43( 23): 8933-8939. |
12 | Jiang J H. Synthesis of spinal lithium-titanium oxide lithium ion-sieve by solid state reaction crystallization method[J]. Asian Journal of Chemistry, 2013, 25( 2): 844-846. |
13 | Lawagon C P, Nisola G M, Mun J Y. Adsorptive Li + mining from liquid resources by H 2TiO 3: equilibrium, kinetics, thermodynamics, and mechanisms [J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 347-356. |
14 | Zhang L, Zhou D, Yao Q, et al. Preparation of H 2TiO 3-lithium adsorbent by the sol-gel process and its adsorption performance [J]. Applied Surface Science, 2016, 368: 82-87. |
15 | Wang S L, Li P, Cui W, et al. Hydrothermal synthesis of lithium-enriched beta-Li 2TiO 3 with an ion-sieve application: excellent lithium adsorption [J]. RSC Advances, 2016, 6( 104): 102608-102616. |
16 | Laumann A, Fehr K T, Wachsmann M, et al. Metastable formation of low temperature cubic Li 2TiO 3 under hydrothermal conditions— its stability and structural properties [J]. Solid State Ionics, 2010, 181( 33/34): 1525-1529. |
17 | Gu D, Sun W, Han G, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine [J]. Chemical Engineering Journal, 2018, 350: 474-483. |
18 | Wang S L, Chen X, Zhang Y, et al. Lithium adsorption from brine by iron-doped titanium lithium ion sieves[J]. Particuology, 2018, 41: 40-47. |
19 | Yang X, Kanoh H, Tang W, et al. Synthesis of Li 1.33Mn 1.67O 4 spinels with different morphologies and their ion adsorptivities after delithiation [J]. Journal of Materials Chemistry, 2000, 10( 8): 1903-1909. |
20 | Zhang X, Luo D, Li G, et al. Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li[Li 0.14Mn 0.47Ni 0.25Co 0.14]O 2 for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1( 34): 9721-9729. |
21 | Liao D Q, Xia C Y, Xi X M, et al. Li-rich layered cathode material Li[Li 0.157Ni 0.138Co 0.134Mn 0.571]O 2 synthesized with solid-state coordination method [J]. Journal of Electronic Materials, 2016, 45( 6): 2981-2986. |
22 | Tian L, Su C W, Wang Y, et al. Electrochemical properties of spinel LiMn 2O 4 cathode material prepared by a microwave-induced solution flameless combustion method [J]. Vacuum, 2019, 164: 153-157. |
23 | 董殿权, 王永顺, 房超. 多孔掺杂型钛系离子筛的制备及吸附性能[J]. 化工学报, 2017, 68( 7): 2812-2817. |
Dong D Q, Wang Y S, Fang C. Preparation and adsorption properties of porous doped titanium series[J]. CIESC Journal, 2017, 68( 7): 2812-2817. | |
24 | Yunjai J, Eunhyea C. Adsorption of lithium from shale gas produced water using titanium based adsorbent[J]. Industrial & Engineering Chemistry Research, 2018, 57: 8381-8387. |
25 | He G, Zhang L Y, Zhou D L. The optimal condition for H 2TiO 3-lithium adsorbent preparation and Li +adsorption confirmed by an orthogonal test design [J]. Ionics, 2015, 21( 8): 2219-2226. |
26 | Zhang L, He G, Zhou D, et al. Study on transformation mechanism of lithium titanate modified with hydrochloric acid[J]. Ionics, 2016, 22( 11): 2007-2014. |
27 | Wang Y Y, Xu J C, Xu X C, et al. Mesoporous hollow silicon spheres modified with manganese ion sieve: preparation and its application for adsorption of lithium and rubidium ions[J]. Applied Organometallic Chemistry, 2018, 32: e4182. |
28 | Akar T, Anilan B, Kaynak Z, et al. Batch and dynamic flow biosorption potential of Agaricus bisporus/Thuja orientalis biomass mixture for decolorization of RR45 dye [J]. Industrial & Engineering Chemistry Research, 2008, 47( 23): 9715-9723. |
29 | Wang L, Meng C G, Han M, et al. Lithium uptake in fixed-pH solution by ion sieves[J]. Journal of Colloid and Interface Science, 2008, 325( 1): 31-40. |
30 | Tian L, Ma W, Han M. Adsorption behavior of Li + onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide [J]. Chemical Engineering Journal, 2010, 156( 1): 134-140. |
31 | Ji Z Y, Yang F J, Zhao Y Y, et al. Preparation of titanium-base lithium ionic sieve with sodium persulfateas eluent and its performance[J]. Chemical Engineering Journal, 2017, 328: 768-775. |
32 | Limjuco L A, Nisola G M, Lawagon C P, et al. H 2TiO 3 composite adsorbent foam for efficient and continuous recovery of Li + from liquid resources [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 267-279. |
33 | Wang S L, Li P, Zhang X, et al. Selective adsorption of lithium from high Mg-containing brines using H xTiO 3 ion sieve [J]. Hydrometallurgy, 2017, 174: 21-28. |
34 | Marcus Y. Thermodynamics of solvation of ions(5): Gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87( 18): 2995-2999. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[4] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[7] | 张孟斌, 李锐, 张嘉杰, 马素霞, 张建胜. 基于共面电容原理的煤炭灰渣介电特性实验研究[J]. 化工学报, 2023, 74(7): 3028-3037. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[10] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[11] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[12] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[13] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[14] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[15] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 566
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 607
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||