化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 23-30.DOI: 10.11949/0438-1157.20191131
收稿日期:
2019-10-07
修回日期:
2019-11-08
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
张小松
作者简介:
王晨(1995—),男,博士研究生,基金资助:
Chen WANG1(),Xiaohui SHE2,Xiaosong ZHANG1()
Received:
2019-10-07
Revised:
2019-11-08
Online:
2020-04-25
Published:
2020-04-25
Contact:
Xiaosong ZHANG
摘要:
针对现今液态空气储能(LAES)研究中普遍存在忽略空气净化过程能耗而使LAES系统能效被高估的问题,提出了一种含空气净化过程的LAES系统。该系统包含空气液化过程、液态空气释能过程和TSA纯化过程,通过全流程的仿真模拟验证系统可行性,并对其进行热力学分析。结果显示:提高液态空气释能压力、空气透平进口温度和储热油使用比例,可以有效提升系统的热力学性能;储存的压缩热仍有约36%未被完全使用,若将其全部回收利用,全系统效率可达0.623;该含空气纯化过程的LAES系统储电效率为0.471,比基线LAES系统低6.8%。
中图分类号:
王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
Chen WANG, Xiaohui SHE, Xiaosong ZHANG. Thermodynamic study of liquid air energy storage with air purification unit[J]. CIESC Journal, 2020, 71(S1): 23-30.
参数 | 数值 |
---|---|
加压压力P c | 9×106 Pa |
热油初始温度T 17 | 293 K |
丙烷初始温度T 34 | 214 K |
甲醇初始温度T 36 | 293 K |
液态空气温度T 13 | 78.54 K |
液态空气压力P 13 | 1×105 Pa |
释能压力P d | 1.2×107 Pa |
透平进口温度P 41 | 458.5 K |
透平出口最终压力P 46 | 1×105 Pa |
吸附温度 | 298 K |
吸附压力 | 5.8×105 Pa |
脱附压力 | 1×105 Pa |
热吹温度P 47 | 443 K |
冷吹温度P 47 ’ | 296 K |
压缩机等熵效率 | 0.89 |
透平等熵效率 | 0.9 |
制冷膨胀机等熵效率 | 0.8 |
低温泵效率 | 0.7 |
表1 LAES系统各工况点状态参数
Table 1 Simulation parameters of proposed LAES system
参数 | 数值 |
---|---|
加压压力P c | 9×106 Pa |
热油初始温度T 17 | 293 K |
丙烷初始温度T 34 | 214 K |
甲醇初始温度T 36 | 293 K |
液态空气温度T 13 | 78.54 K |
液态空气压力P 13 | 1×105 Pa |
释能压力P d | 1.2×107 Pa |
透平进口温度P 41 | 458.5 K |
透平出口最终压力P 46 | 1×105 Pa |
吸附温度 | 298 K |
吸附压力 | 5.8×105 Pa |
脱附压力 | 1×105 Pa |
热吹温度P 47 | 443 K |
冷吹温度P 47 ’ | 296 K |
压缩机等熵效率 | 0.89 |
透平等熵效率 | 0.9 |
制冷膨胀机等熵效率 | 0.8 |
低温泵效率 | 0.7 |
工况点 | 流量/(kg/s) | 温度/K | 压力×10-5 /Pa | 介质 |
---|---|---|---|---|
1 | 129.74 | 293.00 | 1.00 | 空气 |
2 | 200.00 | 506.79 | 5.80 | 空气 |
3 | 200.00 | 309.00 | 5.80 | 空气 |
4 | 200.00 | 298.00 | 5.80 | 空气 |
5 | 199.84 | 298.00 | 5.80 | 空气 |
6 | 199.84 | 446.19 | 20.85 | 空气 |
7 | 199.84 | 309.00 | 20.85 | 空气 |
8 | 199.84 | 490.20 | 90.00 | 空气 |
9 | 199.84 | 309.00 | 90.00 | 空气 |
10 | 199.84 | 221.38 | 90.00 | 空气 |
11 | 199.84 | 123.80 | 90.00 | 空气 |
12 | 199.84 | 78.74 | 1.00 | 空气 |
13 | 129.74 | 78.54 | 1.00 | 空气 |
14 | 70.10 | 79.24 | 1.00 | 空气 |
15 | 70.10 | 216.90 | 1.00 | 空气 |
16 | 70.10 | 293.00 | 1.00 | 空气 |
17 | 380.00 | 293.00 | 1.00 | 储热油 |
18 | 129.20 | 293.00 | 1.00 | 储热油 |
19 | 129.20 | 479.90 | 1.00 | 储热油 |
20 | 125.40 | 293.00 | 1.00 | 储热油 |
21 | 125.40 | 434.47 | 1.00 | 储热油 |
22 | 125.40 | 293.00 | 1.00 | 储热油 |
23 | 125.40 | 481.61 | 1.00 | 储热油 |
24 | 380.00 | 465.85 | 1.00 | 储热油 |
25 | 243.20 | 465.85 | 1.00 | 储热油 |
26 | 86.82 | 465.85 | 1.00 | 储热油 |
27 | 86.82 | 293.87 | 1.00 | 储热油 |
28 | 79.04 | 465.85 | 1.00 | 储热油 |
29 | 79.04 | 309.63 | 1.00 | 储热油 |
30 | 77.34 | 465.85 | 1.00 | 储热油 |
31 | 77.34 | 312.04 | 1.00 | 储热油 |
32 | 243.20 | 304.86 | 1.00 | 储热油 |
33 | 120.00 | 87.20 | 1.00 | 丙烷 |
34 | 120.00 | 214.00 | 1.00 | 丙烷 |
35 | 55.00 | 215.00 | 1.00 | 甲醇 |
36 | 55.00 | 293.00 | 1.00 | 甲醇 |
37 | 129.74 | 78.74 | 1.00 | 空气 |
38 | 129.74 | 86.11 | 120.00 | 空气 |
39 | 129.74 | 206.86 | 120.00 | 空气 |
40 | 129.74 | 290.42 | 120.00 | 空气 |
41 | 129.74 | 458.50 | 120.00 | 空气 |
42 | 129.74 | 304.51 | 24.33 | 空气 |
43 | 129.74 | 458.50 | 24.33 | 空气 |
44 | 129.74 | 306.77 | 4.93 | 空气 |
45 | 129.74 | 458.50 | 4.93 | 空气 |
46 | 129.74 | 307.53 | 1.00 | 空气 |
表2 LAES系统各工况点状态参数
Table 2 Working fluid parameters in LAES system
工况点 | 流量/(kg/s) | 温度/K | 压力×10-5 /Pa | 介质 |
---|---|---|---|---|
1 | 129.74 | 293.00 | 1.00 | 空气 |
2 | 200.00 | 506.79 | 5.80 | 空气 |
3 | 200.00 | 309.00 | 5.80 | 空气 |
4 | 200.00 | 298.00 | 5.80 | 空气 |
5 | 199.84 | 298.00 | 5.80 | 空气 |
6 | 199.84 | 446.19 | 20.85 | 空气 |
7 | 199.84 | 309.00 | 20.85 | 空气 |
8 | 199.84 | 490.20 | 90.00 | 空气 |
9 | 199.84 | 309.00 | 90.00 | 空气 |
10 | 199.84 | 221.38 | 90.00 | 空气 |
11 | 199.84 | 123.80 | 90.00 | 空气 |
12 | 199.84 | 78.74 | 1.00 | 空气 |
13 | 129.74 | 78.54 | 1.00 | 空气 |
14 | 70.10 | 79.24 | 1.00 | 空气 |
15 | 70.10 | 216.90 | 1.00 | 空气 |
16 | 70.10 | 293.00 | 1.00 | 空气 |
17 | 380.00 | 293.00 | 1.00 | 储热油 |
18 | 129.20 | 293.00 | 1.00 | 储热油 |
19 | 129.20 | 479.90 | 1.00 | 储热油 |
20 | 125.40 | 293.00 | 1.00 | 储热油 |
21 | 125.40 | 434.47 | 1.00 | 储热油 |
22 | 125.40 | 293.00 | 1.00 | 储热油 |
23 | 125.40 | 481.61 | 1.00 | 储热油 |
24 | 380.00 | 465.85 | 1.00 | 储热油 |
25 | 243.20 | 465.85 | 1.00 | 储热油 |
26 | 86.82 | 465.85 | 1.00 | 储热油 |
27 | 86.82 | 293.87 | 1.00 | 储热油 |
28 | 79.04 | 465.85 | 1.00 | 储热油 |
29 | 79.04 | 309.63 | 1.00 | 储热油 |
30 | 77.34 | 465.85 | 1.00 | 储热油 |
31 | 77.34 | 312.04 | 1.00 | 储热油 |
32 | 243.20 | 304.86 | 1.00 | 储热油 |
33 | 120.00 | 87.20 | 1.00 | 丙烷 |
34 | 120.00 | 214.00 | 1.00 | 丙烷 |
35 | 55.00 | 215.00 | 1.00 | 甲醇 |
36 | 55.00 | 293.00 | 1.00 | 甲醇 |
37 | 129.74 | 78.74 | 1.00 | 空气 |
38 | 129.74 | 86.11 | 120.00 | 空气 |
39 | 129.74 | 206.86 | 120.00 | 空气 |
40 | 129.74 | 290.42 | 120.00 | 空气 |
41 | 129.74 | 458.50 | 120.00 | 空气 |
42 | 129.74 | 304.51 | 24.33 | 空气 |
43 | 129.74 | 458.50 | 24.33 | 空气 |
44 | 129.74 | 306.77 | 4.93 | 空气 |
45 | 129.74 | 458.50 | 4.93 | 空气 |
46 | 129.74 | 307.53 | 1.00 | 空气 |
参数 | 数值 |
---|---|
压缩机耗功 | 109243.864 kW |
制冷膨胀机输出功率 | 4311.376 kW |
空气液化过程效率 | 0.814 |
低温泵耗功 | 2527.568 kW |
空气透平输出功率 | 59068.701 kW |
液态空气释能过程效率 | 0.873 |
液体收率 | 0.65 |
基线系统储电效率 | 0.539 |
表3 LAES系统模拟结果参数
Table 3 Summary of simulation results
参数 | 数值 |
---|---|
压缩机耗功 | 109243.864 kW |
制冷膨胀机输出功率 | 4311.376 kW |
空气液化过程效率 | 0.814 |
低温泵耗功 | 2527.568 kW |
空气透平输出功率 | 59068.701 kW |
液态空气释能过程效率 | 0.873 |
液体收率 | 0.65 |
基线系统储电效率 | 0.539 |
1 | Janet L , Sawin J , Freyr S . Renewables 2018 global status report [EB/OL]. [2018-12-01]. http: //www.ren21.net/gsr-2018/chapters/chapter_01/chapter_01/. |
2 | Chen H , Cong T N , Yang W , et al . Progress in electrical energy storage system: a critical review [J]. Progress in Natural Science, 2009, 19(3): 291-312. |
3 | 周原冰 . 全球能源互联网及关键技术[EB/OL]. [2019-04-22]. http: //kns.cnki.net/kcms/detail/ 11.1784.N.20190420.143.002.html. |
Zhou Y B . Global energy internet and key technologies [EB/OL]. [2019-04-22]. http: //kns.cnki.net/kcms/detail/ 11.1784.N.20190420.1439.002.html. | |
4 | Rodrigues E M G , Godina R , Santos S F , et al . Energy storage systems supporting increased penetration of renewables in islanded systems [J]. Energy, 2014, 75: 265-280. |
5 | Denholm P , Hand M . Grid flexibility and storage required to achieve very high penetration of variable renewable electricity [J]. Energy Policy, 2011, 39(3): 1817-1830. |
6 | Li Y , Chen H , Zhang X , et al . Renewable energy carriers: hydrogen or liquid air/nitrogen? [J]. Applied Thermal Engineering, 2010, 30(14/15): 1985-1990. |
7 | Antonelli M , Desideri U , Giglioli R , et al . Liquid air energy storage: a potential low emissions and efficient storage system [J]. Energy Procedia, 2016, 88: 693-697. |
8 | Antonelli M , Barsali S , Desideri U , et al . Liquid air energy storage: potential and challenges of hybrid power plants [J]. Applied Energy, 2017, 194: 522-529. |
9 | Smith E M . Storage of electrical energy using supercritical liquid air [J]. Proceedings of the Institution of Mechanical Engineers, 2006, 191(1): 289-298. |
10 | Peng H , Shan X , Yang Y , et al . A study on performance of a liquid air energy storage system with packed bed units [J]. Applied Energy, 2018, 211: 126-135. |
11 | Al-Zareer M , Dincer I , Rosen M A . Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities [J]. Energy, 2017, 141: 792-802. |
12 | Sciacovelli A , Vecchi A , Ding Y . Liquid air energy storage (LAES) with packed bed cold thermal storage — from component to system level performance through dynamic modelling [J]. Applied Energy, 2017, 190: 84-98. |
13 | She X , Peng X , Nie B , et al . Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression [J]. Applied Energy, 2017, 206: 1632-1642. |
14 | Peng X , She X , Cong L , et al . Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage [J]. Applied Energy, 2018, 221: 86-99. |
15 | Li Y , Jin Y , Chen H , et al . An integrated system for thermal power generation, electrical energy storage and CO2 capture [J]. International Journal of Energy Research, 2011, 35(13): 1158-1167. |
16 | Aneke M , Wang M . Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines [J]. Applied Energy, 2015, 154: 556-566. |
17 | Zhang T , Zhang X , Xue X , et al . Thermodynamic analysis of a hybrid power system combining Kalina cycle with liquid air energy storage [J]. Entropy, 2019, 21(3): 220. |
18 | Xie Y , Xue X . Thermodynamic analysis on an integrated liquefied air energy storage and electricity generation system [J]. Energies, 2018, 11(10): 2540. |
19 | Ameel B , joen C T , De K K , et al . Thermodynamic analysis of energy storage with a liquid air Rankine cycle [J]. Applied Thermal Engineering, 2013, 52(1): 130-140. |
20 | Tafone A , Romagnoli A , Li Y , et al . Techno-economic analysis of a liquid air energy storage (LAES) for cooling application in hot climates [J]. Energy Procedia, 2017, 105: 4450-4457. |
21 | Zhang T , Chen L , Zhang X , et al . Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy [J]. Energy, 2018, 155: 641-650. |
22 | Serbezov A . Adsorption equilibrium of water vapor on F-200 activated alumina [J]. J. Chem. Eng. Data, 2003, 48: 421-425. |
23 | Wang L , Liu Z , Li P , et al . Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process [J]. Chemical Engineering Journal, 2012, 197: 151-161. |
24 | Oh H T , Lim S J , Kim J H , et al . Adsorption equilibria of water vapor on an alumina/zeolite 13X composite and silica gel [J]. Journal of Chemical & Engineering Data, 2017, 62(2): 804-811. |
25 | 孔祥明, 杨颖, 沈文龙, 等 . CO2/CH4/N2在沸石13X-APG上的吸附平衡 [J]. 化工学报, 2013, 64(6): 2117-2124. |
Kong X M , Yang Y , Shen W L , et al . Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG [J]. CIESC Journal, 2013, 64(6): 2117-2124. | |
26 | Rege S U , Yang R T , Buzanowski M A . Sorbents for air prepurification in air separation [J]. Chemical Engineering Science, 2000, 55: 4827-4838. |
27 | Ko D , Kim M , Moona I , et al . Analysis of purge gas temperature in cyclic TSA process [J]. Chemical Engineering Science, 2002, 57: 179-195. |
28 | Kumar R , Koss V , Perelman N , et al . Thermal swing adsorption process to minimize the thermal pulse during the feed step [J]. Separation Science and Technology, 2000, 35(14): 2279-2297. |
29 | Tian Q , He G , Wang Z , et al . A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units [J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7502-7515. |
30 | Zhang P , Wang L . Numerical analysis on the performance of the three-bed temperature swing adsorption process for air prepurification [J]. Industrial & Engineering Chemistry Research, 2012, 52(2): 885-898. |
31 | Xu J F , Peng Q , Fu J L . Exergy analysis on thermodynamic system of power plant [J]. Energy Engineering, 2001, 5: 21-24. |
32 | 朱永强, 尹忠东 . 基于能量利用效率和耗能比的节能效果评估体系[J]. 电工电能新技术, 2007, 26: 33-36. |
Zhu Y Q , Yin Z D . New evaluation system for energy savings based on efficiency and loss ratio [J]. Advanced Technology of Electrical Engineering and Energy, 2007, 26: 33-36. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[11] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[12] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[13] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[14] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||