化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 397-403.DOI: 10.11949/0438-1157.20191098
收稿日期:
2019-10-07
修回日期:
2019-11-06
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
王栋
作者简介:
王栋(1981—),男,博士,讲师,基金资助:
Dong WANG(),Yaru LIU,Zhuo CHEN,Zunli KOU,Yuehong LU
Received:
2019-10-07
Revised:
2019-11-06
Online:
2020-04-25
Published:
2020-04-25
Contact:
Dong WANG
摘要:
基于一套已有的小型CO2水源热泵热水器实验台,运用不同的理论方法对其最佳充注量进行计算,通过实验研究不同充注量对系统性能的影响,并利用实验结果对理论计算结果的准确度进行验证。研究结果表明:小型CO2水源热泵热水器存在着最佳充注量,在此充注量条件下,系统的COPheat最大,实验系统的最佳充注量为270 g。当充注量减小为最佳值的89%时(230 g),COPheat降低10.8%,增大为最佳值的111%时(300 g),COPheat降低了2.6%,即充注量不足时,COPheat对充注量的变化更为敏感。此外,充注量增加会提高系统热水的出水量,但超过最佳值后,效果不明显。实验数据法和额定工况法均适用于本文所研究的CO2水源热泵热水器系统,最大误差不超过3.7%。本研究可以为小型CO2跨临界系统最佳充注量的确定及如何维持系统高效运行提供理论指导。
中图分类号:
王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
Dong WANG, Yaru LIU, Zhuo CHEN, Zunli KOU, Yuehong LU. Effects on performance of small water-source heat pump water heater with CO2 by refrigerant charge and determination of optimal value[J]. CIESC Journal, 2020, 71(S1): 397-403.
尺寸和结构 | 气冷器 | 蒸发器/回热器 |
---|---|---|
结构 | 管式换热器(外管1根,内管3根) | 管式换热器(外管1根,内管1根) |
外径/mm | 19(外管),6(内管) | 16/10(外管),10/6(内管) |
壁厚/mm | 1(外管),1(内管) | 1.2/0.8(外管),0.8/0.5(内管) |
长度/m | 4.64(外管),4.64(内管) | 8.4/2(外管),8.4/2(内管) |
表1 换热器尺寸和结构
Table 1 Sizes and structure of heat exchangers
尺寸和结构 | 气冷器 | 蒸发器/回热器 |
---|---|---|
结构 | 管式换热器(外管1根,内管3根) | 管式换热器(外管1根,内管1根) |
外径/mm | 19(外管),6(内管) | 16/10(外管),10/6(内管) |
壁厚/mm | 1(外管),1(内管) | 1.2/0.8(外管),0.8/0.5(内管) |
长度/m | 4.64(外管),4.64(内管) | 8.4/2(外管),8.4/2(内管) |
状态点 | T /℃ | p/MPa | ρ/(kg·m-3) | h/(kJ·kg-1) | s/(kJ·kg-1·K-1) | cp/(kJ·kg-1·K-1) | X |
---|---|---|---|---|---|---|---|
1 | 15.0 | 3.7701 | 93.638 | 449.55 | 1.9012 | 1.5128 | 1 |
2 | 79.2 | 8.5 | 175.64 | 485.39 | 1.9012 | 1.5938 | 1 |
2’ | 83.4 | 8.5 | 170.08 | 491.96 | 1.9197 | 1.5347 | 1 |
3 | 34.0 | 8.5 | 644.7 | 300.9 | 1.3247 | 7.0601 | 1 |
4 | 30.2 | 8.5 | 723.44 | 280.32 | 1.2573 | 4.3457 | 1 |
5 | 3.0 | 3.7701 | 908.95(l) | 207.43(l) | 1.0259(l) | 2.6453(l) | 0.329 |
107.46(g) | 428.97(g) | 1.8282(g) | 2.0203(g) | ||||
6 | 3.0 | 3.7701 | 107.46 | 428.97 | 1.8282 | 2.0203 | 1 |
表2 模拟计算结果
Table 2 Results of computer simulation
状态点 | T /℃ | p/MPa | ρ/(kg·m-3) | h/(kJ·kg-1) | s/(kJ·kg-1·K-1) | cp/(kJ·kg-1·K-1) | X |
---|---|---|---|---|---|---|---|
1 | 15.0 | 3.7701 | 93.638 | 449.55 | 1.9012 | 1.5128 | 1 |
2 | 79.2 | 8.5 | 175.64 | 485.39 | 1.9012 | 1.5938 | 1 |
2’ | 83.4 | 8.5 | 170.08 | 491.96 | 1.9197 | 1.5347 | 1 |
3 | 34.0 | 8.5 | 644.7 | 300.9 | 1.3247 | 7.0601 | 1 |
4 | 30.2 | 8.5 | 723.44 | 280.32 | 1.2573 | 4.3457 | 1 |
5 | 3.0 | 3.7701 | 908.95(l) | 207.43(l) | 1.0259(l) | 2.6453(l) | 0.329 |
107.46(g) | 428.97(g) | 1.8282(g) | 2.0203(g) | ||||
6 | 3.0 | 3.7701 | 107.46 | 428.97 | 1.8282 | 2.0203 | 1 |
1 | Park K J, Lee Y, Jung D. Performance of R170/R1270 mixture under air-conditioning and heat pumping conditions [J]. Journal of Mechanical Science and Technology, 2010, 24(4): 879-885. |
2 | Ju F J, Fan X W, Chen Y P, et al. Experiment and simulation study on performances of heat pump water heater using blend of R744/R290 [J]. Energy & Buildings, 2018, 169: 148-156. |
3 | 杨梦, 张华, 秦延斌, 等. 混合制冷剂R134a/R1234yf (R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(3): 1182-1189. |
Yang M, Zhang H, Qin Y B, et al. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf(R513A) and R134a [J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1182-1189. | |
4 | Wang D, Liu Y R, Kou Z L, et al. Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development [J]. International Journal of Refrigeration, 2019, 106: 628-638. |
5 | 梦照峰, 张华, 秦延斌, 等. R1234yf/R134a混合物在汽车空调中替代R134a的实验研究[J]. 化工学报, 2018, 69(6): 2396-2403. |
Meng Z F, Zhang H, Qin Y B, et al. Experimental study on R1234yf/R134a mixture as alternative to R134a in automobile air conditioner [J]. CIESC Journal, 2018, 69(6): 2396-2403. | |
6 | Tammaro M, Montagud C, Corberán J M, et al. Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps [J]. International Journal of Refrigeration, 2017, 74: 224-239. |
7 | 何丽娟, 黄艳伟, 李虹琰. 双温低品位热驱动跨临界CO2-[emim][Tf2N]吸收制冷系统的性能[J]. 过程工程学报, 2017, 17(3): 626-631. |
He L J, Huang Y W, Li H Y. Hydrocyclone separation performance of an absorption refrigeration system driven by double low-quality energy using transcritical CO2-[emim][Tf2N] [J]. Chin. J. Process Eng., 2017, 17(3): 626-631. | |
8 | 寇宏侨, 罗会龙, 杜鸿儒, 等. 低温下提高CO2空气源热泵进水温度对系统性能的影响[J]. 化工学报, 2016, 67: 378-385. |
Kou H Q, Luo H L, Du H R, et al. Effects of inlet water temperature of air source carbon dioxide heat pump on system performance under low-temperature climate conditions [J]. CIESC Journal, 2016, 67: 378-385. | |
9 | 史敏, 贾磊, 张秀平, 等. CO2应用于我国工商制冷行业的适用性研究[J]. 制冷学报, 2016, 37(6): 97-103. |
Shi M, Jia L, Zhang X P, et al. Applicability research on CO2 application in Chinese industrial and commercial refrigeration industry [J]. Journal of Refrigeration, 2016, 37(6): 97-103. | |
10 | 武卫东, 贾松燊, 吴俊, 等. 以降压为目的的CO2混合工质制冷系统研究进展[J]. 化工进展, 2017, 36: 1969-1976. |
Wu W D, Jia S S, Wu J, et al. Research progress on refrigeration systems using CO2 mixture refrigerant to reduce its cycle pressure [J]. Chemical Industry and Engineering Progress, 2017, 36: 1969-1976. | |
11 | 代宝民, 刘圣春, 孙志利, 等. 机械过冷CO2跨临界制冷循环性能理论分析[J]. 制冷学报, 2018, 39(1): 13-19. |
Dai B M, Liu S C, Sun Z L, et al. Theoretical performance analysis of CO2 transcritical refrigeration cycle with mechanical subcooling [J]. Journal of Refrigeration, 2018, 39(1): 13-19. | |
12 | 赵宗彬, 宋昱龙, 包继虎, 等. 跨临界CO2空气源热泵性能研究[J]. 制冷学报, 2018, 39(2): 22-30. |
Zhao Z B, Song Y L, Bao J H, et al. Research on system performance of air-source transcritical CO2 heat pump [J]. Journal of Refrigeration, 2018, 39(2): 22-30. | |
13 | 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436. |
Jiang L L, Liu J H, Zhang L, et al. Flow boiling heat transfer characteristics of CO2 in horizontal micro-tube [J]. CIESC Journal, 2018, 69(4): 1428-1436. | |
14 | 刘忠彦, 孙大汉, 金旭, 等. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64. |
Liu Z Y, Sun D H, Jin X, et al. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64. | |
15 | 丁国良, 黄冬平. 二氧化碳制冷技术[M]. 北京: 化学工业出版社, 2006. |
Ding G L, Huang D P. Refrigeration Technology of CO2 [M]. Beijing: Chemical Industry Press, 2006. | |
16 | 邹春妹, 岑继文, 刘培, 等. 跨临界二氧化碳热泵喷射循环实验[J]. 化工学报, 2016, 67(4): 1520-1526. |
Zou C M, Cen J W, Liu P, et al. Transcritical CO2 heat pump system with an ejector [J]. CIESC Journal, 2016, 67(4): 1520-1526. | |
17 | Baek C, Heo J, Jung J, et al. Optimal control of the gas-cooler pressure of a CO2 heat pump using EEV opening and outdoor fan speed in the cooling mode [J]. International Journal of Refrigeration, 2013, 36(4): 1276-1284. |
18 | Agrawal N, Bhattacharyya S. Experimental investigations on adiabatic capillary tube in a transcritical CO2 heat pump system for simultaneous water cooling and heating [J]. International Journal of Refrigeration, 2011, 34(2): 476-483. |
19 | Yang J L, Ma Y T, Li M X, et al. Modeling and simulating the transcritical CO2 heat pump system [J]. Energy, 2010, 35(12): 4812-4818. |
20 | Song Y L, Wang J, Cao F, et al. Experimental investigation on a capillary tube based transcritical CO2 heat pump system [J]. Applied Thermal Engineering, 2017, 112: 184-189. |
21 | Cho H, Ryu C, Kim Y, et al. Effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump [J]. International Journal of Refrigeration, 2005, 28(8): 1266-1273. |
22 | Kim D H, Park H S, Kim M S. The effect of the refrigerant charge amount on single and cascade cycle heat pump systems [J]. International Journal of Refrigeration, 2014, 40: 254-268. |
23 | Pisano A, Martínez-Ballester S, Corberán J M, et al. Optimal design of a light commercial freezer through the analysis of the combined effects of capillary tube diameter and refrigerant charge on the performance [J]. International Journal of Refrigeration, 2015, 52: 1-10. |
24 | 王栋, 姜敬德, 任红梅, 等. 充注量对小型CO2 制冷系统影响的实验研究[J]. 低温工程, 2013, 191(1): 56-59. |
Wang D, Jiang J D, Ren H M, et al. Experimental study on performances of a small carbon dioxide refrigeration system at different refrigerant charge [J]. Cryogenic Engineering, 2013, 191(1): 56-59. | |
25 | 王栋, 李蒙, 武卫东, 等. 小型CO2 制冷系统最佳充注量的计算及实验研究[J]. 西安交通大学学报, 2013, 47(3): 80-84. |
Wang D, Li M, Wu W D, et al. Calculation and experiment study on optimum charge for a small CO2 refrigeration system [J]. Journal of Xi an Jiaotong University, 2013, 47(3): 80-84. | |
26 | Wang D, Lu Y H, Tao L R. Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater [J]. International Journal of Refrigeration, 2018, 88: 626-636. |
27 | Sarkar J, Bhattacharyya S, Gopal M R. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications [J]. International Journal of Refrigeration, 2004, 27(8): 830-838. |
28 | Dmitriyev V I, Pisarenko V E. Determination of optimum refrigerant charge for domestic refrigerator units [J]. International Journal of Refrigeration, 1984, 7(3): 178-180. |
29 | 吴业正. 小型制冷装置设计指导[M]. 北京: 机械工业出版社, 2011. |
Wu Y Z. Design Guidance for Small Refrigeration Units [M]. Beijing: Machine Industry Press, 2011. | |
30 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 家用和类似用途热泵热水器: GB/T 23137—2008 [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Heat pump water heater for household and similar application: GB/T 23137—2008 [S]. Beijing: Standards Press of China, 2008. |
[1] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[2] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[5] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[6] | 雷博雯, 吴建华, 吴启航. R290低压比热泵高补气过热度循环研究[J]. 化工学报, 2023, 74(5): 1875-1883. |
[7] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[8] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[9] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[10] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[11] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[12] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[13] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[14] | 鲁军辉, 李俊明. H2O-CO2、H2O-N2、H2O-He水平管外自然对流凝结换热特性研究[J]. 化工学报, 2022, 73(9): 3870-3879. |
[15] | 裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
阅读次数 | ||||||||||||||||||||||
全文 |
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||