化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 461-470.DOI: 10.11949/0438-1157.20190670
收稿日期:
2019-06-17
修回日期:
2019-10-09
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
蒋兰英
作者简介:
李志强(1990—),男,硕士,Zhiqiang LI1(),Na LYU1,Lanying JIANG1,2()
Received:
2019-06-17
Revised:
2019-10-09
Online:
2020-04-25
Published:
2020-04-25
Contact:
Lanying JIANG
摘要:
正渗透技术是一种新兴的膜分离技术,在处理有机废水方面具有广阔的应用前景。分别对Poten以及HTI商业正渗透膜进行改性,并用于对焦化废水中难降解毒性小分子(吲哚和吡啶)的截留测试。探究了水相单体PIP浓度、膜朝向、汲取液浓度对改性前后两种膜水通量、Js/Jw比值、有机物截留率的影响,以及改性前后两膜特征参数的变化。结果表明:对Poten膜和HTI膜进行界面聚合改性后,膜水通量以及Js/Jw比值都不同程度地降低;改性后的两正渗透膜水渗透系数A、盐渗透系数B均降低,而膜结构参数S以及对NaCl和有机物的截留率均提高;其中HTI-IP复合膜对有机物的截留率(81%)明显高于IP-2(改性Poten膜)复合膜;与FO模式相比,IP-2复合膜在PRO模式下(汲取液面向活性层)具有更高的水通量及反向盐通量。此外,在两种膜朝向下,水通量及反向盐通量都随汲取液浓度的增大而增大,但是在FO模式下(料液面向活性层),通量呈现非线性增长。
中图分类号:
李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470.
Zhiqiang LI, Na LYU, Lanying JIANG. Modification of commercial forward osmosis membranes and investigation on treatment of coking wastewater[J]. CIESC Journal, 2020, 71(S1): 461-470.
成分 | 浓度/(mg/L) |
---|---|
吲哚 | 50 |
吡啶 | 50 |
NH3-N | 80 |
COD | 146 |
表1 模拟焦化废水的组成(pH=7.5)
Table 1 Composition of simulated coking wastewater(pH=7.5)
成分 | 浓度/(mg/L) |
---|---|
吲哚 | 50 |
吡啶 | 50 |
NH3-N | 80 |
COD | 146 |
样品 | A/(kg/(m2·h·bar)) | B/(kg/(m2·h)) | S/μm | R/% |
---|---|---|---|---|
PIP-0 | 7.64 | 0.264 | 882 | 87.2 |
PIP-2 | 5.43 | 0.071 | 1543 | 94.7 |
HTI | 0.36 | 0.0035 | 278 | 93.0 |
HTI-IP | 0.33 | 0.0011 | 581 | 98.0 |
表2 改性前后正渗透膜的特征参数测试结果
Table 2 Test results of characteristic parameters of FO membrane before and after modification
样品 | A/(kg/(m2·h·bar)) | B/(kg/(m2·h)) | S/μm | R/% |
---|---|---|---|---|
PIP-0 | 7.64 | 0.264 | 882 | 87.2 |
PIP-2 | 5.43 | 0.071 | 1543 | 94.7 |
HTI | 0.36 | 0.0035 | 278 | 93.0 |
HTI-IP | 0.33 | 0.0011 | 581 | 98.0 |
1 | Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. |
2 | Marañón E, Vázquez I, Rodríguez J. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresour. Technol., 2008, 99(10): 4192-4198. |
3 | Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 915-921. |
4 | 刘国新, 吴海珍, 孙胜利, 等.市政污泥接种焦化废水好氧降解能力及微生物群落演替的响应分析[J].环境科学, 2017, 38(9): 3807-3815. |
Liu G X, Wu H Z, Song S L, et al. Aerobic degradation and microbial community succession of coking wastewater with municipal sludge[J]. Environmental Science, 2017, 38(9): 3807-3815. | |
5 | Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. |
6 | 潘霞霞, 李媛媛, 黄会静, 等.焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响[J].化工学报, 2009, 60(12): 3089-3096. |
Pan X X, Li Y Y, Huang H J, et al. Biodegradation of thiocyanate and inhibitory interaction with phenol, ammonia in coking wastewater[J]. CIESC Journal, 2009, 60(12): 3089-3096. | |
7 | Jin X W, Li E C, Lu S G, et al. Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8): 1565-1574. |
8 | Bodzek M, Bohdziewicz J, Kowalska M. Immobilized enzyme membranes for phenol and cyanide decomposition[J]. Journal of Membrane Science, 1996, 113(2): 373-384. |
9 | Kowalska M, Bodzek M, Bohdziewicz J. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms[J]. Process Biochemistry, 1998, 33(2): 189-197. |
10 | 曲余玲, 毛艳丽, 翟晓东.焦化废水深度处理技术及工艺现状[J].工业水处理, 2015, 35(1): 14-17. |
Qu Y L, Mao Y L, Zhai X D. Advanced treatment technology of coking wastewater and its present status[J]. Industrial Water Treatment, 2015, 35(1): 14-17. | |
11 | Kimura K, Oki Y. Efficient control of membrane fouling in MF by removal of biopolymers: comparison of various pretreatments[J]. Water Research, 2017, 115: 172-179. |
12 | Kimura K, Shikato K, Oki Y, et al. Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes[J]. Journal of Membrane Science, 2018, 554: 83-89. |
13 | Zhao S, Zou L, Tang C Y, et al. Recent developments in forward osmosis: opportunities and challenges[J]. Journal of Membrane Science, 2012, 396(1): 1-21. |
14 | Cath T Y, Childress A E, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87. |
15 | Cornelissen E R, Harmsen D, Beerendonk E F, et al. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater [J]. Water Science & Technology, 2011, 63(8): 1557-1565. |
16 | Achilli A, Cath T Y, Marchand E A, et al. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes[J]. Desalination, 2009, 239(1): 10-21. |
17 | Wang X, Chang V, Tang C. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132. |
18 | Huang L, Lee D J. Membrane bioreactor: a mini review on recent R&D works[J]. Bioresource Technology, 2015, 194: 383-388. |
19 | Xiao D, Tang C Y, Zhang J, et al. Modeling salt accumulation in osmotic membrane bioreactors: implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2): 314-324. |
20 | Nguyen N C, Chen S S, Nguyen H T, et al. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment[J]. Water Research, 2016, 91: 305-313. |
21 | Yuan B, Wang X, Tang C, et al. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy[J]. Water Research, 2015, 75: 188-200. |
22 | Li F, Cheng Q, Tian Q, et al. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor[J]. Bioresource Technology, 2016, 211: 751-758. |
23 | Israelachvili J N. Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems[M]. USA: Academic Press, 1985. |
24 | Xie M, Price W E, Long D N, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. Journal of Membrane Science, 2013, 438(7): 57-64. |
25 | Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science, 2005, 251(1/2): 67-79. |
26 | Chai G Y, Krantz W B. Formation and characterization of polyamide membranes via interfacial polymerization[J]. Journal of Membrane Science, 1994, 93(2): 175-192. |
27 | Chinpa W, Quémener D, Bèche E, et al. Preparation of poly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol)[J]. Journal of Membrane Science, 2018, 365(1): 89-97. |
28 | Rastgar M, Bozorg A, Shakeri A. A novel dimensionally-controlled nano-pore forming template in forward osmosis membranes[J]. Environmental Science & Technology, 2018, 52(5): 2704–2716. |
29 | 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260. |
Wang Y Q, Xu T W, Wang H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[3] | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
[4] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
[5] | 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773. |
[6] | 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278. |
[7] | 唐翠萍, 张雅楠, 梁德青, 李祥. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139. |
[8] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[9] | 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. |
[10] | 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043. |
[11] | 刘坐东, 王禹晨, 邢维维, 赵波, 徐志明. 复合改性表面抑制颗粒污垢积聚特性分析[J]. 化工学报, 2022, 73(11): 4928-4937. |
[12] | 高奕吟, 付睿, 王丽, 郭耘. NbO x 掺杂对Pt/TiO2催化燃烧氯乙烯的促进作用[J]. 化工学报, 2022, 73(10): 4429-4437. |
[13] | 张照曦,钟梅,李建,亚力昆江?吐尔逊. 改性蒙脱土对新疆和丰煤热解行为的影响[J]. 化工学报, 2022, 73(1): 402-410. |
[14] | 张志华, 杜威, 段学志, 周兴贵. 表面改性未焙烧TS-1固载金催化丙烯氢氧环氧化反应性能研究[J]. 化工学报, 2021, 72(7): 3613-3625. |
[15] | 梁兴唐, 李凤枝, 钟书明, 张瑞瑞, 焦淑菲, 汪双双, 尹艳镇. 聚乙烯亚胺原位改性多孔灯芯草高效吸附废水中的Cr(Ⅵ)[J]. 化工学报, 2021, 72(6): 3380-3389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||