化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3780-3788.DOI: 10.11949/0438-1157.20200009
姚育栋(),王中华,林志彬,胡晓慧,陈锦,郑淞生,王兆林()
收稿日期:
2020-01-03
修回日期:
2020-05-16
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
王兆林
作者简介:
姚育栋(1995—),男,硕士研究生,基金资助:
Yudong YAO(),Zhonghua WANG,Zhibin LIN,Xiaohui HU,Jin CHEN,Songsheng ZHENG,Zhaolin WANG()
Received:
2020-01-03
Revised:
2020-05-16
Online:
2020-08-05
Published:
2020-08-05
Contact:
Zhaolin WANG
摘要:
为研究在线电解氨水为氢燃料电池供氢的可行性,采用电化学共沉积法,在不同沉积条件下制备了Pt-Ir催化电极,用循环伏安法(CV)与计时安培法(I-t)结合电镜、XPS和XRD结构分析,研究了电极对氨水的电解催化性能。结果表明,沉积电位影响了合金催化剂的组成、晶型、晶粒尺寸等,从而进一步影响了电极在氨催化过程中的性能。当沉积电位固定,电极上的催化剂负载量、氨水电解过程中催化剂的形貌、结构、组成基本稳定。其中,-0.05 V(vs. SCE)沉积电位下制备的催化剂在氨的电解催化过程中持续性和稳定性好,催化剂的负载量和过电位也最低。利用电化学上电解氨和生成水电位上的差异,将氨电解为燃料电池供氢,在低电流密度下(<10 mA/cm2)燃料电池为氨电解池提供能量的同时仍然有40%以上的额外功率用于其他负载。
中图分类号:
姚育栋, 王中华, 林志彬, 胡晓慧, 陈锦, 郑淞生, 王兆林. Pt-Ir共沉积电位对电解氨水制氢的性能影响[J]. 化工学报, 2020, 71(8): 3780-3788.
Yudong YAO, Zhonghua WANG, Zhibin LIN, Xiaohui HU, Jin CHEN, Songsheng ZHENG, Zhaolin WANG. Influences of Pt-Ir electro-codeposition potentials on hydrogen production with ammonia electrolysis[J]. CIESC Journal, 2020, 71(8): 3780-3788.
主要的催化剂 | 阳极起始过电位(vs. SHE)/mV | 文献 |
---|---|---|
Rh | 738.4 | [ |
Ru | 749.4 | [ |
Pt | 498.6 | [ |
Ni | 698.1 | [ |
Pt-Rh | 455.1 | [ |
Pt-Ru | 440.6 | [ |
Pt-Ir | 394.9 | [ |
表1 一些催化剂在氨溶液中的阳极过电位
Table 1 Anode overpotential of some catalysts in ammonia solution
主要的催化剂 | 阳极起始过电位(vs. SHE)/mV | 文献 |
---|---|---|
Rh | 738.4 | [ |
Ru | 749.4 | [ |
Pt | 498.6 | [ |
Ni | 698.1 | [ |
Pt-Rh | 455.1 | [ |
Pt-Ru | 440.6 | [ |
Pt-Ir | 394.9 | [ |
1 | Edwards P P, Kuznetsov V L, David W I F, et al. Hydrogen and fuel cells: towards a sustainable energy future[J]. Energy Policy, 2008, 36(12): 4356-4362. |
2 | Durbin D J, Malardier-Jugroot C. Review of hydrogen storage techniques for on board vehicle applications[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14595-14617. |
3 | Yilanci A, Dincer I, Ozturk H K. A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications[J]. Progress in Energy and Combustion Science, 2009, 35(3): 231-244. |
4 | Ahluwalia R K, Wang X, Rousseau A, et al. Fuel economy of hydrogen fuel cell vehicles[J]. Journal of Power Sources, 2004, 130(1/2): 192-201. |
5 | Klerke A, Christensen C H, Nørskov J K, et al. Ammonia for hydrogen storage: challenges and opportunities[J]. Journal of Materials Chemistry, 2008, 18(20): 2304-2310. |
6 | Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
7 | Service R F. Liquid sunshine[J]. Science, 2018, 361(6398): 120-123. |
8 | Boggs B K, Botte G G. On-board hydrogen storage and production: an application of ammonia electrolysis[J]. Journal of Power Sources, 2009, 192(2): 573-581. |
9 | 许炜, 陶占良, 陈军. 储氢研究进展[J]. 化学进展, 2006, 18(2): 200-210. |
Xu W, Tao Z L, Chen J. Progress of research on hydrogen storage[J]. Progress in Chemistry, 2006, 18(2):200-210. | |
10 | 杨昌海, 万志, 刘正英, 等. 氢综合利用经济性分析[J]. 电器与能效管理技术, 2019, 1(21): 83-88. |
Yang C H, Wan Z, Liu Z Y, et al. Economic analysis of comprehensive utilization of hydrogen[J]. Electrical & Energy Management Technology, 2019, 1(21): 83-88. | |
11 | 王焕霞.氢能发展与加氢站建设的思考[J]. 石油库与加油站, 2019, 28(6): 21-24. |
Wang H X. Thoughts on the development of hydrogen energy and construction of hydrogen fueling station[J]. Oil Eepot and Gas Station, 2019, 28(6): 21-24. | |
12 | Wang M, Wang Z, Gong X, et al. The intensification technologies to water electrolysis for hydrogen production—a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29(1): 573-588. |
13 | Lan R, Irvine J T S, Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1482-1494. |
14 | Wu M, Du J, Tao C, et al. A tri-functionalised PtSnOx-based electrocatalyst for hydrogen generation via ammonia decomposition under native pH conditions[J]. Journal of Colloid and Interface Science, 2019, 542(1): 451-459. |
15 | Barbosa J R, Leon M N, Fernandes C M, et al. PtSnO2/C and Pt/C with preferential (100) orientation: high active electrocatalysts for ammonia electro-oxidation reaction[J]. Applied Catalysis B: Environmental, 2020, 264(1): 1-26. |
16 | Zhang L, Han L, Liu H, et al. Potential‐cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angewandte Chemie International Edition, 2017, 56(44): 13694-13698. |
17 | Vitse F, Cooper M, Botte G G. On the use of ammonia electrolysis for hydrogen production[J]. Journal of Power Sources, 2005, 142(1/2): 18-26. |
18 | Kang Y, Wang W, Li J, et al. High performance PtxEu alloys as effective electrocatalysts for ammonia electro-oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(30): 18959-18967. |
19 | Palaniappan R, Ingram D C, Botte G G. Hydrogen evolution reaction kinetics on electrodeposited Pt-M (M= Ir, Ru, Rh, and Ni) cathodes for ammonia electrolysis[J]. Journal of the Electrochemical Society, 2014, 161(1): 12-22. |
20 | Palaniappan R, Botte G G. Effect of ammonia on Pt, Ru, Rh, and Ni cathodes during the alkaline hydrogen evolution reaction[J]. The Journal of Physical Chemistry C, 2013, 117(34): 17429-17441. |
21 | Vidal-Iglesias F J, Solla-Gullón J, Montiel V, et al. Ammonia selective oxidation on Pt (100) sites in an alkaline medium[J]. The Journal of Physical Chemistry B, 2005, 109(26): 12914-12919. |
22 | Boggs B K, Botte G G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media[J]. Electrochimica Acta, 2010, 55(19): 5287-5293. |
23 | Singh B, Murad L, Laffir F, et al. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media[J]. Nanoscale, 2011, 3(8): 3334-3349. |
24 | Boggs B K, Botte G G. Optimization of Pt–Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media[J]. Electrochimica Acta, 2010, 55(19): 5287-5293. |
25 | Assumpção M H M T, Piasentin R M, Hammer P, et al. Oxidation of ammonia using PtRh/C electrocatalysts: fuel cell and electrochemical evaluation[J]. Applied Catalysis B: Environmental, 2015, 174(1): 136-144. |
26 | Le Vot S, Roué L, Bélanger D. Synthesis of Pt-Ir catalysts by coelectrodeposition: application to ammonia electrooxidation in alkaline media[J]. Journal of Power Sources, 2013, 223(1): 221-231. |
27 | Vázquez-Gómez L, Cattarin S, Gerbasi R, et al. Activation of porous Ni cathodes towards hydrogen evolution by electrodeposition of Ir nuclei[J]. Journal of Applied Electrochemistry, 2009, 39(11): 2165-2172. |
28 | Sacré N, Duca M, Garbarino S, et al. Tuning Pt–Ir interactions for NH3 electrocatalysis[J]. ACS Catalysis, 2018, 8(3): 2508-2518. |
29 | Zhong C, Liu J, Ni Z, et al. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities[J]. Science China Materials, 2014, 57(1): 13-25. |
30 | Allagui A, Oudah M, Tuaev X, et al. Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2455-2463. |
31 | Jiang M, Zhu D, Zhao X. Electrolysis of ammonia for hydrogen production catalyzed by Pt and Pt-Ir deposited on nickel foam[J]. Journal of Energy Chemistry, 2014, 23(1): 1-8. |
32 | McCrum I T, Janik M J. Deconvoluting cyclic voltammograms to accurately calculate Pt electrochemically active surface area[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6237-6245. |
33 | Paoletti C, Cemmi A, Giorgi L, et al. Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation[J]. Journal of Power Sources, 2008, 183(1): 84-91. |
34 | El Sawy E N, Birss V I. Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition[J]. Journal of Materials Chemistry, 2009, 19(43): 8244-8252. |
35 | Da Silva L A, Alves V A, de Castro S C, et al. XPS study of the state of iridium, platinum, titanium and oxygen in thermally formed IrO2+ TiO2+ PtOx films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 170(2/3): 119-126. |
36 | Wieckowski A, Savinova E R, Vayenas C G. Catalysis and Electrocatalysis at Nanoparticle Surfaces[M]. CRC Press, 2003. |
37 | Yamamoto K, Imaoka T, Chun W J, et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions[J]. Nature Chemistry, 2009, 1(5): 397-402. |
38 | Koper M T M. Structure sensitivity and nanoscale effects in electrocatalysis[J]. Nanoscale, 2011, 3(5): 2054-2073. |
39 | Katsounaros I, Chen T, Gewirth A A, et al. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt (100)[J]. The Journal of Physical Chemistry Letters, 2016, 7(3): 387-392. |
40 | Bonnin E P, Biddinger E J, Botte G G. Effect of catalyst on electrolysis of ammonia effluents[J]. Journal of Power Sources, 2008, 182(1): 284-290. |
41 | Lu X, Deng Z, Chau K S, et al. Mechanistic insight into catalytic oxidation of ammonia on clean, O- and OH- assisted Ir (111) surfaces[J]. ChemCatChem, 2013, 5(7): 1832-1841. |
42 | Zhu L, Lin H, Li Y, et al. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials[J]. Nature Communications, 2016, 7(1): 1-7. |
43 | Barbir F. PEM Fuel Cells: Theory and Practice[M]. Academic Press, 2012. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||