化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3288-3295.DOI: 10.11949/0438-1157.20200042
收稿日期:
2020-01-13
修回日期:
2020-03-24
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
方俊华
作者简介:
方俊华(1965—),男,博士,副教授,基金资助:
Junhua FANG(),Qi TANG,Yang LI,Yaoyao LI,Qiuying LYU,Zhun FAN,Jian ZHOU,Jin XU
Received:
2020-01-13
Revised:
2020-03-24
Online:
2020-07-05
Published:
2020-07-05
Contact:
Junhua FANG
摘要:
在不同温度下进行污泥水热碳化实验,利用Hedley顺序提取法探究水热炭中磷的形态变化,并结合钙、铁、铝的浸出行为进一步解释含磷物质的形态分布。结果表明,磷主要富集在水热炭中,水热碳化促进有机磷(Po)向无机磷(Pi)转化,NaOH溶解态磷(NaOH-P)转化为HCl溶解态磷(HCl-P)和残渣态(Res-P)。污泥和水热炭中Ca、Fe主要以HCl溶解态为主;Al则由NaOH溶解态转化为 HCl溶解态。并且水热碳化过程促使污泥中磷形态从磷酸铝盐(Al-P)、磷酸铁盐(Fe-P)向磷酸钙盐(Ca-P)、磷酸镁盐(Mg-P)转化。通过理论分析,水热炭中Al-P可能以Al2PO43+和AlHPO4+络合物为主;羟基磷灰石是Ca-P的主要存在形态;部分磷酸盐可能被铁氧化物或氢氧化物固定。为后续水热炭的回收利用提供理论基础。
中图分类号:
方俊华,唐琦,李杨,李遥瑶,吕秋颖,范准,周健,许劲. 污泥水热碳化中磷的形态变化及金属浸出行为[J]. 化工学报, 2020, 71(7): 3288-3295.
Junhua FANG,Qi TANG,Yang LI,Yaoyao LI,Qiuying LYU,Zhun FAN,Jian ZHOU,Jin XU. Morphology of phosphorus and metal extraction behavior in sewage sludge during hydrothermal carbonization treatment[J]. CIESC Journal, 2020, 71(7): 3288-3295.
工业分析/%(质量)① | 元素分析/%(质量)① | H/C | O/C | 高位热值/ ( MJ·kg-1)③ | |||||
---|---|---|---|---|---|---|---|---|---|
VM | FC | Ash | C | H | O② | N | |||
30.99 | 0.10 | 68.91 | 17.83 | 3.16 | 7.36 | 2.74 | 2.13 | 0.27 | 9.26 |
表1 污泥基本性质
Table 1 Physicochemical characteristics of sewage sludge
工业分析/%(质量)① | 元素分析/%(质量)① | H/C | O/C | 高位热值/ ( MJ·kg-1)③ | |||||
---|---|---|---|---|---|---|---|---|---|
VM | FC | Ash | C | H | O② | N | |||
30.99 | 0.10 | 68.91 | 17.83 | 3.16 | 7.36 | 2.74 | 2.13 | 0.27 | 9.26 |
P | Fe | Al | Ca | Mg | Si | Na | K | S |
---|---|---|---|---|---|---|---|---|
11.88 | 57.90 | 34.47 | 23.55 | 5.82 | 57.04 | 3.17 | 10.14 | 2.79 |
表2 污泥矿物元素含量/(mg·g-1)
Table 2 Elements content of sewage sludge/(mg·g-1)
P | Fe | Al | Ca | Mg | Si | Na | K | S |
---|---|---|---|---|---|---|---|---|
11.88 | 57.90 | 34.47 | 23.55 | 5.82 | 57.04 | 3.17 | 10.14 | 2.79 |
样品 | 含量/(mg·g-1) | 回收率 /% | ||||||
---|---|---|---|---|---|---|---|---|
P | Ca | Fe | Al | P | Ca | Fe | Al | |
HC-160 | 14.72 | 26.79 | 62.42 | 7.24 | 81.45 | 74.77 | 70.86 | 13.81 |
HC-180 | 16.35 | 33.75 | 74.20 | 10.40 | 82.49 | 85.91 | 76.80 | 18.08 |
HC-200 | 18.65 | 38.51 | 79.88 | 12.26 | 82.67 | 86.10 | 72.61 | 18.73 |
HC-220 | 19.55 | 40.93 | 84.74 | 13.12 | 83.41 | 88.09 | 74.17 | 19.29 |
HC-240 | 19.99 | 41.43 | 86.29 | 14.45 | 83.71 | 87.49 | 74.11 | 20.85 |
HC-260 | 20.92 | 41.82 | 87.63 | 15.65 | 84.74 | 85.46 | 72.82 | 21.84 |
表3 不同温度下水热炭中磷及金属的含量变化
Table 3 Major element content in hydrochar
样品 | 含量/(mg·g-1) | 回收率 /% | ||||||
---|---|---|---|---|---|---|---|---|
P | Ca | Fe | Al | P | Ca | Fe | Al | |
HC-160 | 14.72 | 26.79 | 62.42 | 7.24 | 81.45 | 74.77 | 70.86 | 13.81 |
HC-180 | 16.35 | 33.75 | 74.20 | 10.40 | 82.49 | 85.91 | 76.80 | 18.08 |
HC-200 | 18.65 | 38.51 | 79.88 | 12.26 | 82.67 | 86.10 | 72.61 | 18.73 |
HC-220 | 19.55 | 40.93 | 84.74 | 13.12 | 83.41 | 88.09 | 74.17 | 19.29 |
HC-240 | 19.99 | 41.43 | 86.29 | 14.45 | 83.71 | 87.49 | 74.11 | 20.85 |
HC-260 | 20.92 | 41.82 | 87.63 | 15.65 | 84.74 | 85.46 | 72.82 | 21.84 |
样品 | H2O-P | NaHCO3-P | NaHCO3-Pi | NaHCO3-Po | NaOH-P | NaOH-Pi | NaOH-Po | HCl-P | Pi①/% |
---|---|---|---|---|---|---|---|---|---|
HC-160 | 0.04 | 0.45 | 0.42 | 0.03 | 8.85 | 5.90 | 2.95 | 4.54 | 74.07 |
HC-180 | 0.03 | 0.42 | 0.38 | 0.04 | 8.22 | 5.64 | 2.59 | 5.45 | 70.27 |
HC-200 | 0.02 | 0.42 | 0.42 | 0.01 | 7.99 | 7.39 | 0.60 | 6.15 | 74.88 |
HC-220 | 0.03 | 0.36 | 0.34 | 0.02 | 6.37 | 6.01 | 0.36 | 7.41 | 70.54 |
HC-240 | 0.01 | 0.29 | 0.20 | 0.09 | 2.46 | 2.25 | 0.21 | 12.91 | 77.09 |
HC-260 | 0.01 | 0.06 | 0.05 | 0.01 | 1.04 | 0.91 | 0.13 | 15.20 | 77.30 |
污泥 | 0.20 | 0.90 | 0.81 | 0.09 | 6.40 | 3.17 | 3.23 | 2.57 | 56.83 |
表4 污泥及水热炭中磷的顺序提取分布含量/(mg·g-1)
Table 4 Amounts of P in hydrochar and sludge extracted by Hedley sequential method/(mg·g-1)
样品 | H2O-P | NaHCO3-P | NaHCO3-Pi | NaHCO3-Po | NaOH-P | NaOH-Pi | NaOH-Po | HCl-P | Pi①/% |
---|---|---|---|---|---|---|---|---|---|
HC-160 | 0.04 | 0.45 | 0.42 | 0.03 | 8.85 | 5.90 | 2.95 | 4.54 | 74.07 |
HC-180 | 0.03 | 0.42 | 0.38 | 0.04 | 8.22 | 5.64 | 2.59 | 5.45 | 70.27 |
HC-200 | 0.02 | 0.42 | 0.42 | 0.01 | 7.99 | 7.39 | 0.60 | 6.15 | 74.88 |
HC-220 | 0.03 | 0.36 | 0.34 | 0.02 | 6.37 | 6.01 | 0.36 | 7.41 | 70.54 |
HC-240 | 0.01 | 0.29 | 0.20 | 0.09 | 2.46 | 2.25 | 0.21 | 12.91 | 77.09 |
HC-260 | 0.01 | 0.06 | 0.05 | 0.01 | 1.04 | 0.91 | 0.13 | 15.20 | 77.30 |
污泥 | 0.20 | 0.90 | 0.81 | 0.09 | 6.40 | 3.17 | 3.23 | 2.57 | 56.83 |
污泥 | HC-160 | HC-180 | HC-200 | HC-220 | HC-240 | HC-260 |
---|---|---|---|---|---|---|
6.6 | 5.9 | 6.1 | 6.6 | 6.9 | 7.1 | 7.3 |
表5 不同水热碳化温度下样品的pH
Table 5 pH of samples at different hydrothermal carbonization temperatures
污泥 | HC-160 | HC-180 | HC-200 | HC-220 | HC-240 | HC-260 |
---|---|---|---|---|---|---|
6.6 | 5.9 | 6.1 | 6.6 | 6.9 | 7.1 | 7.3 |
1 | Ashley K, Cordell D, Mavinic D. A brief history of phosphorus: from the philosopher s stone to nutrient recovery and reuse [J]. Chemosphere, 2011, 84(6): 737-746. |
2 | Chowdhury R B, Moore G A, Weatherley A J, et al. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation [J]. Journal of Cleaner Production, 2017, 140: 945-963. |
3 | Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought [J]. Global Environmental Change, 2009, 19(2): 292-305. |
4 | Chen M, Graedel T E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts [J]. Global Environmental Change, 2016, 36: 139-152. |
5 | Scholz R W, Wellmer F W. Although there is no physical short-term scarcity of phosphorus, its resource efficiency should be improved: reasons to improve phosphorus resource efficiency [J]. Journal of Industrial Ecology, 2019, 23(2): 313-318. |
6 | Cordell D, Rosemarin A, Schröder J J, et al. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options [J]. Chemosphere, 2011, 84(6): 747-758. |
7 | 王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 404-412. |
Wang C, Liu Q W, Zhi Y, et al. Contents and forms of phosphorous in the municipal sewage sludge of China[J]. Environmental Science, 2019, 40(4): 404-412. | |
8 | 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化 [J]. 化工学报, 2018, 69(7): 3208-3215. |
Meng X D, Huang Q X, Yan J H, et al. Migration and transformation of phosphorus during pyrolysis process ofsewage sludge[J]. CIESC Journal, 2018, 69(7): 3208-3215. | |
9 | Qian T T, Jiang H. Migration of phosphorus in sewage sludge during different thermal treatment processes [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1411-1419. |
10 | Fang L, Li J S, Guo M Z, et al. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA) [J]. Chemosphere, 2018, 193: 278-287. |
11 | Acelas N Y, López D P, Brilman D W F, et al. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery [J]. Bioresource Technology, 2014, 174: 167-175. |
12 | Escala M, Zumbühl T, Koller C, et al. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: a feasibility study on a laboratory scale [J]. Energy & Fuels, 2012, 27(1): 454-460. |
13 | Zhao P, Shen Y, Ge S, et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization [J]. Energy Conversion and Management, 2014, 78: 815-821. |
14 | Berge N D, Ro K S, Mao J, et al. Hydrothermal carbonization of municipal waste streams [J]. Environ. Sci. Technol., 2011, 45(13): 5696-703. |
15 | Lu X, Jordan B, Berge N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques [J]. Waste Management, 2012, 32(7): 1353-65. |
16 | Sevilla M, Maciá-Agulló J A, Fuertes A B. Hydrothermal carbonization of biomass as a route for the sequestration of CO: Chemical and structural properties of the carbonized products [J]. Biomass & Bioenergy, 2011, 35(7): 3152-3159. |
17 | 刘娟, 池涌, 舒迪. 过程参数对纤维素水热碳化的影响 [J]. 化工学报, 2015, 66(12): 264-271. |
Liu J, Chi Y, Shu D. Effects of process parameters on hydrothermal carbonization of cellulose[J]. CIESC Journal, 2015, 66(12): 264-271. | |
18 | Idowu I, Li L, Flora J R V, et al. Hydrothermal carbonization of food waste for nutrient recovery and reuse [J]. Waste Management, 2017, 69: 480-491. |
19 | 王兴栋, 李春星, 尤甫天, 等. 污泥水热处理过程中氮元素的迁移转化 [J]. 化工学报, 2018, 69(6): 359-367. |
Wang X D, Li C X, You F T, et al. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 359-367. | |
20 | 郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性 [J]. 化工进展, 2020, 39(5): 2017-2025. |
Zheng X Y, Jiang Z W, Chen W, et al. Migration and transformation of phosphorus in sewage sludge during the hydrothermal carbonization process[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. | |
21 | Huang R, Fang C, Lu X, et al. Transformation of phosphorus during (hydro)thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling [J]. Environ. Sci. Technol., 2017, 51(18): 10284-10298. |
22 | Huang R, Tang Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge [J]. Environ. Sci. Technol., 2015, 49(24): 14466-14474. |
23 | Huang R, Tang Y. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: insights from sequential extraction and P K-edge XANES [J]. Water Research, 2016, 100: 439-447. |
24 | Huang R, Fang C, Zhang B, et al. Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures [J]. Environ. Sci. Technol., 2018, 52(5): 3016-3026. |
25 | Xu Y, Yang F, Zhang L, et al. Migration and transformation of phosphorus in municipal sludge by the hydrothermal treatment and its directional adjustment [J]. Waste Management, 2018, 81: 196-201. |
26 | Hedley M J, Steaward J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. |
27 | Cross A F, Schlesinger W H. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems [J]. Geoderma, 1995, 64(3/4): 197-214. |
28 | Li M, Tang Y, Lu X Y, et al. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation [J]. Water Research, 2018, 140: 90-99. |
29 | Ekpo U, Ross A B, Camargo-Valero M A, et al. Influence of pH on hydrothermal treatment of swine manure: impact on extraction of nitrogen and phosphorus in process water [J]. Bioresource Technology, 2016, 214: 637-644. |
30 | Wang T, Zhai Y, Zhu Y, et al. Feedwater pH affects phosphorus transformation during hydrothermal carbonization of sewage sludge [J]. Bioresource Technology, 2017, 245(Pt A): 182-187. |
31 | 程瑶, 韩芸, 卓杨, 等. 温度对热水解预处理高含固污泥特性的影响 [J]. 环境工程学报, 2016, 10(1): 330-334. |
Cheng Y, Han Y, Zhuo Y, et al. Effect of temperature on characteristics of thermal hydrolysis pretreatment of high-solid sludge[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 330-334. | |
32 | Feng Y, Kunyu M, Tianchi Y, et al. Phosphorus transformation in hydrothermal pretreatment and steam gasification of sewage sludge [J]. Energy & Fuels, 2018, 32(8): 8545-8551. |
33 | 王方舟, 刘雪瑜, 肖书虎, 等. 污水处理厂脱水污泥中磷的形态及其溶出规律 [J]. 环境工程学报, 2020, 14(4): 1067-1074. |
Wang F Z, Liu X Y, Xiao S H, et al. Species and release of phosphorus from dewatered sludge in sewage treatment plants[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1067-1074. |
[1] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[2] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[3] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[4] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[5] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[6] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[7] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[8] | 陈宇豪, 陈晓平, 马吉亮, 梁财. 市政污泥回转窑焚烧气态污染物排放特性研究[J]. 化工学报, 2023, 74(5): 2170-2178. |
[9] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[10] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[11] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[12] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[13] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[14] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[15] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 517
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 675
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||