1 |
Ashley K, Cordell D, Mavinic D. A brief history of phosphorus: from the philosopher s stone to nutrient recovery and reuse [J]. Chemosphere, 2011, 84(6): 737-746.
|
2 |
Chowdhury R B, Moore G A, Weatherley A J, et al. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation [J]. Journal of Cleaner Production, 2017, 140: 945-963.
|
3 |
Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought [J]. Global Environmental Change, 2009, 19(2): 292-305.
|
4 |
Chen M, Graedel T E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts [J]. Global Environmental Change, 2016, 36: 139-152.
|
5 |
Scholz R W, Wellmer F W. Although there is no physical short-term scarcity of phosphorus, its resource efficiency should be improved: reasons to improve phosphorus resource efficiency [J]. Journal of Industrial Ecology, 2019, 23(2): 313-318.
|
6 |
Cordell D, Rosemarin A, Schröder J J, et al. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options [J]. Chemosphere, 2011, 84(6): 747-758.
|
7 |
王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 404-412.
|
|
Wang C, Liu Q W, Zhi Y, et al. Contents and forms of phosphorous in the municipal sewage sludge of China[J]. Environmental Science, 2019, 40(4): 404-412.
|
8 |
孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化 [J]. 化工学报, 2018, 69(7): 3208-3215.
|
|
Meng X D, Huang Q X, Yan J H, et al. Migration and transformation of phosphorus during pyrolysis process ofsewage sludge[J]. CIESC Journal, 2018, 69(7): 3208-3215.
|
9 |
Qian T T, Jiang H. Migration of phosphorus in sewage sludge during different thermal treatment processes [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1411-1419.
|
10 |
Fang L, Li J S, Guo M Z, et al. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA) [J]. Chemosphere, 2018, 193: 278-287.
|
11 |
Acelas N Y, López D P, Brilman D W F, et al. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery [J]. Bioresource Technology, 2014, 174: 167-175.
|
12 |
Escala M, Zumbühl T, Koller C, et al. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: a feasibility study on a laboratory scale [J]. Energy & Fuels, 2012, 27(1): 454-460.
|
13 |
Zhao P, Shen Y, Ge S, et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization [J]. Energy Conversion and Management, 2014, 78: 815-821.
|
14 |
Berge N D, Ro K S, Mao J, et al. Hydrothermal carbonization of municipal waste streams [J]. Environ. Sci. Technol., 2011, 45(13): 5696-703.
|
15 |
Lu X, Jordan B, Berge N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques [J]. Waste Management, 2012, 32(7): 1353-65.
|
16 |
Sevilla M, Maciá-Agulló J A, Fuertes A B. Hydrothermal carbonization of biomass as a route for the sequestration of CO: Chemical and structural properties of the carbonized products [J]. Biomass & Bioenergy, 2011, 35(7): 3152-3159.
|
17 |
刘娟, 池涌, 舒迪. 过程参数对纤维素水热碳化的影响 [J]. 化工学报, 2015, 66(12): 264-271.
|
|
Liu J, Chi Y, Shu D. Effects of process parameters on hydrothermal carbonization of cellulose[J]. CIESC Journal, 2015, 66(12): 264-271.
|
18 |
Idowu I, Li L, Flora J R V, et al. Hydrothermal carbonization of food waste for nutrient recovery and reuse [J]. Waste Management, 2017, 69: 480-491.
|
19 |
王兴栋, 李春星, 尤甫天, 等. 污泥水热处理过程中氮元素的迁移转化 [J]. 化工学报, 2018, 69(6): 359-367.
|
|
Wang X D, Li C X, You F T, et al. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 359-367.
|
20 |
郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性 [J]. 化工进展, 2020, 39(5): 2017-2025.
|
|
Zheng X Y, Jiang Z W, Chen W, et al. Migration and transformation of phosphorus in sewage sludge during the hydrothermal carbonization process[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025.
|
21 |
Huang R, Fang C, Lu X, et al. Transformation of phosphorus during (hydro)thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling [J]. Environ. Sci. Technol., 2017, 51(18): 10284-10298.
|
22 |
Huang R, Tang Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge [J]. Environ. Sci. Technol., 2015, 49(24): 14466-14474.
|
23 |
Huang R, Tang Y. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: insights from sequential extraction and P K-edge XANES [J]. Water Research, 2016, 100: 439-447.
|
24 |
Huang R, Fang C, Zhang B, et al. Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures [J]. Environ. Sci. Technol., 2018, 52(5): 3016-3026.
|
25 |
Xu Y, Yang F, Zhang L, et al. Migration and transformation of phosphorus in municipal sludge by the hydrothermal treatment and its directional adjustment [J]. Waste Management, 2018, 81: 196-201.
|
26 |
Hedley M J, Steaward J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976.
|
27 |
Cross A F, Schlesinger W H. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems [J]. Geoderma, 1995, 64(3/4): 197-214.
|
28 |
Li M, Tang Y, Lu X Y, et al. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation [J]. Water Research, 2018, 140: 90-99.
|
29 |
Ekpo U, Ross A B, Camargo-Valero M A, et al. Influence of pH on hydrothermal treatment of swine manure: impact on extraction of nitrogen and phosphorus in process water [J]. Bioresource Technology, 2016, 214: 637-644.
|
30 |
Wang T, Zhai Y, Zhu Y, et al. Feedwater pH affects phosphorus transformation during hydrothermal carbonization of sewage sludge [J]. Bioresource Technology, 2017, 245(Pt A): 182-187.
|
31 |
程瑶, 韩芸, 卓杨, 等. 温度对热水解预处理高含固污泥特性的影响 [J]. 环境工程学报, 2016, 10(1): 330-334.
|
|
Cheng Y, Han Y, Zhuo Y, et al. Effect of temperature on characteristics of thermal hydrolysis pretreatment of high-solid sludge[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 330-334.
|
32 |
Feng Y, Kunyu M, Tianchi Y, et al. Phosphorus transformation in hydrothermal pretreatment and steam gasification of sewage sludge [J]. Energy & Fuels, 2018, 32(8): 8545-8551.
|
33 |
王方舟, 刘雪瑜, 肖书虎, 等. 污水处理厂脱水污泥中磷的形态及其溶出规律 [J]. 环境工程学报, 2020, 14(4): 1067-1074.
|
|
Wang F Z, Liu X Y, Xiao S H, et al. Species and release of phosphorus from dewatered sludge in sewage treatment plants[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1067-1074.
|