化工学报 ›› 2020, Vol. 71 ›› Issue (11): 4903-4917.DOI: 10.11949/0438-1157.20200668
余畅游1(),何兵兵2,刘岩博1,侯宝红1,陈明洋1(),龚俊波1,3()
收稿日期:
2020-05-29
修回日期:
2020-07-05
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
陈明洋,龚俊波
作者简介:
余畅游(1996—),男,硕士研究生,基金资助:
Changyou YU1(),Bingbing HE2,Yanbo LIU1,Baohong HOU1,Mingyang CHEN1(),Junbo GONG1,3()
Received:
2020-05-29
Revised:
2020-07-05
Online:
2020-11-05
Published:
2020-11-05
Contact:
Mingyang CHEN,Junbo GONG
摘要:
球形聚结技术能够在同一单元操作中耦合结晶和造粒过程以制备球形晶体。相比于传统流化床造粒技术,该技术具有工艺流程短,生产成本低,产品性能优良的优势,但是同时也面临研究方法不成熟、机理复杂、工业放大和特殊结晶器型等方面的挑战。总结了针对球形结晶产品的表征技术和关键产品指标,介绍了球形聚结过程机理、数学模型和新技术设备的研究进展,并提出关于深化机理、完善模型、开发新设备方面的新思路,最后对其在工业生产尤其是制药领域的发展进行了展望。
中图分类号:
余畅游,何兵兵,刘岩博,侯宝红,陈明洋,龚俊波. 制造球形粒子的晶体聚结方法[J]. 化工学报, 2020, 71(11): 4903-4917.
Changyou YU,Bingbing HE,Yanbo LIU,Baohong HOU,Mingyang CHEN,Junbo GONG. Granulation of spherical particles by crystal agglomeration method[J]. CIESC Journal, 2020, 71(11): 4903-4917.
1 | Iveson S M, Litster J D, Hapgood K, et al. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review[J]. Powder Technology, 2001, 117(1): 3-39. |
2 | Usha A N, Mutalik S, Reddy M S, et al. Preparation and, in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70(2): 674-683. |
3 | Varshosaz J, Tavakoli N, Salamat F A. Enhanced dissolution rate of simvastatin using spherical crystallization technique[J]. Pharmaceutical Development and Technology, 2011, 16(5): 529-535. |
4 | Lasagabaster A, Martín C, Goñi M M. Preparation of spherically agglomerated crystals of the 3,5-diglucoside of cyanidin (cyanin)[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 1994, 60(4): 397-403. |
5 | Sadowski Z. Selective spherical agglomeration of fine salt-type mineral particles in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96(3): 277-285. |
6 | Huang A Y, Berg J C. Gelation of liquid bridges in spherical agglomeration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215(1/2/3): 241-252. |
7 | Gao H, Yao X L, Huang M, et al. The facile fabrication and formation mechanism of self-assembled spherical 3,3'-diamino-4,4'-azoxyfurazan (DAAF) hierarchical structures[J]. CrystEngComm, 2019, 21(41): 6136-6144. |
8 | Chen M, Liu X, Yu C, et al. Strategy of selecting solvent systems for spherical agglomeration by the Lifshitz-van der Waals acid-base approach[J]. Chemical Engineering Science, 2020, 220: 1-14. |
9 | Stock D I. Micro-spherical aggregation of barium sulphate[J]. Nature, 1952, 170(4323): 423-423. |
10 | Smith H M, Puddington I E. Spherical agglomeration of barium sulphate[J]. Canadian Journal of Chemistry, 1960, 38(10): 1911-1916. |
11 | Katta J, Rasmuson Å C. Spherical crystallization of benzoic acid[J]. International Journal of Pharmaceutics, 2008, 348(1/2): 61-69. |
12 | Thati J, Rasmuson Å C. On the mechanisms of formation of spherical agglomerates[J]. European Journal of Pharmaceutical Sciences, 2011, 42(4): 365-379. |
13 | Thati J, Rasmuson Å C. Particle engineering of benzoic acid by spherical agglomeration[J]. European Journal of Pharmaceutical Sciences, 2012, 45(5): 657-667. |
14 | Orlewski P M, Ahn B, Mazzotti M. Tuning the particle sizes in spherical agglomeration[J]. Crystal Growth & Design, 2018, 18(10): 6257-6265. |
15 | Pitt K, Peña R, Tew J D, et al. Particle design via spherical agglomeration: a critical review of controlling parameters, rate processes and modelling[J]. Powder Technology, 2018, 326: 327-343. |
16 | Cui F, Kawashima Y, Takeuchi H, et al. Preparation of controlled releasing acrylic polymer microspheres of acebutolol hydrochloride and those powder coated microspheres with sodium alginate in a polymeric spherical crystallization system[J]. Chemical and Pharmaceutical Bulletin, 1996, 44(4): 837-842. |
17 | Kawashima Y, Okumura M, Takenaka H. Spherical crystallization: direct spherical agglomeration of salicylic acid crystals during crystallization[J]. Science, 1982, 216(4550): 1127-1128. |
18 | Imai M, Kamiya K, Hino T, et al. Development of agglomerated crystals of ascorbic acid for airect tableting by spherical crystallization technique and evaluation of their compactibilities[J]. Journal of the Society of Powder Technology, Japan, 2001, 38(3): 160-168. |
19 | Peña R, Nagy Z K. Process intensification through continuous spherical crystallization using a two-stage mixed suspension mixed product removal (MSMPR) system[J]. Crystal Growth & Design, 2015, 15(9): 4225-4236. |
20 | Peña R, Oliva J A, Burcham C L, et al. Process intensification through continuous spherical crystallization using an oscillatory flow baffled crystallizer[J]. Crystal Growth & Design, 2017, 17(9): 4776-4784. |
21 | Peña R, Burcham C L, Jarmer D J, et al. Modeling and optimization of spherical agglomeration in suspension through a coupled population balance model[J]. Chemical Engineering Science, 2017, 167: 66-77. |
22 | Takasaki H, Yonemochi E, Ito M, et al. The importance of binder moisture content in metformin HCl high-dose formulations prepared by moist aqueous granulation (MAG)[J]. Results in Pharma Sciences, 2015, 5: 1-7. |
23 | Faure A, York P, Rowe R C. Process control and scale-up of pharmaceutical wet granulation processes: a review[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52(3): 269-277. |
24 | Passerini N, Calogerà G, Albertini B, et al. Melt granulation of pharmaceutical powders: a comparison of high-shear mixer and fluidised bed processes[J]. International Journal of Pharmaceutics, 2010, 391(1): 177-186. |
25 | Gao J Z H, Jain A, Motheram R, et al. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation[J]. International Journal of Pharmaceutics, 2002, 237(1/2): 1-14. |
26 | Morin G, Briens L. A comparison of granules produced by high-shear and fluidized-bed granulation methods[J]. AAPS PharmSciTech, 2014, 15(4): 1039-1048. |
27 | Erdemir D, Rosenbaum T, Chang S Y, et al. Novel co-processing methodology to enable direct compression of a poorly compressible, highly water-soluble active pharmaceutical ingredient for controlled release[J]. Organic Process Research & Development, 2018, 22(10): 1383-1392. |
28 | Bauer-Brandl A. Polymorphic transitions of cimetidine during manufacture of solid dosage forms[J]. International Journal of Pharmaceutics, 1996, 140(2): 195-206. |
29 | Wong M W Y, Mitchell A G. Physicochemical characterization of a phase change produced during the wet granulation of chlorpromazine hydrochloride and its effects on tableting[J]. International Journal of Pharmaceutics, 1992, 88(1/2/3): 261-273. |
30 | Rieck C, Hoffmann T, Bück A, et al. Influence of drying conditions on layer porosity in fluidized bed spray granulation[J]. Powder Technology, 2015, 272: 120-131. |
31 | Leon R A L, Wan W Y, Badruddoza A Z M, et al. Simultaneous spherical crystallization and co-formulation of drug (s) and excipient from microfluidic double emulsions[J]. Crystal Growth & Design, 2014, 14(1): 140-146. |
32 | Wurster D E. Air-suspension technique of coating drug particles: a preliminary report[J]. Journal of the American Pharmaceutical Association, 1959, 48(8): 451-454. |
33 | Scott M W, Lieberman H A, Rankell A S, et al. Continuous production of tablet granulations in a fluidized bed (I): Theory and design considerations[J]. Journal of Pharmaceutical Sciences, 1964, 53(3): 314-320. |
34 | Pagire S K, Korde S A, Whiteside B R, et al. Spherical crystallization of carbamazepine/saccharin co-crystals: selective agglomeration and purification through surface interactions[J]. Crystal Growth & Design, 2013, 13(10): 4162-4167. |
35 | Jin S, Chen M, Li Z, et al. Design and mechanism of the formation of spherical KCl particles using cooling crystallization without additives[J]. Powder Technology, 2018, 329: 455-462. |
36 | Barrett P J. The shape of rock particles, a critical review[J]. Sedimentology, 1980, 27(3): 291-303. |
37 | Wu S, Chen M, Rohani S, et al. Solvent-mediated nonoriented self-aggregation transformation: a case study of gabapentin[J]. Crystal Growth & Design, 2017, 17(8): 4207-4216. |
38 | Ueda M, Nakamura Y, Makita H, et al. Particle design of enoxacin by spherical crystallizaion technique(Ⅱ):Characteristics of agglomerated crystals[J]. Chemical & Pharmaceutical Bulletin, 1991, 39(5): 1277-1281. |
39 | Pons M N, Vivier H, Dodds J. Particle shape characterization using morphological descriptors[J]. Particle & Particle Systems Characterization, 1997, 14(6): 272-277. |
40 | Gao C F, Xiao Z Y, Zou H P, et al. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 374-384. |
41 | Khan K A, Sarfaraz M D, Doddayya H. Design and evaluation of aceclofenac fast dissolving tablets prepared by crystallo-co-agglomeration technique[J]. International Journal of Pharmacology and Pharmaceutical Sciences, 2011, 3(4): 116-123. |
42 | Pawar A P, Paradkar A R, Kadam S S, et al. Crystallo-co-agglomeration: a novel technique to obtain ibuprofen-paracetamol agglomerates[J]. AAPS PharmSciTech, 2004, 5(3): 57-64. |
43 | Shah D, Sorathiab K. Design and evaluation of sustained release spherical agglomerates of fluvastatin sodium by crystallo-co-agglomeration[J]. Journal of Applied Pharmaceutical Science, 2017, 7(9): 99-108. |
44 | Zhong C, Chu C C. On the origin of amorphous cores in biomimetic CaCO3 spherulites new insights into spherulitic crystallization[J]. Crystal Growth & Design, 2010, 10(12): 5043-5049. |
45 | Jitkar S, Thipparaboina R, Chavan R B, et al. Spherical agglomeration of platy crystals: curious case of etodolac[J]. Crystal Growth & Design, 2016, 16(7): 4034-4042. |
46 | Jarosz P J, Parrott E L. Comparison of granule strength and tablet tensile strength[J]. Journal of Pharmaceutical Sciences, 1983, 72(5): 530-535. |
47 | Garala K C, Patel J M, Dhingani A P, et al. Quality by design (QbD) approach for developing agglomerates containing racecadotril and loperamide hydrochloride by crystallo-co-agglomeration[J]. Powder Technology, 2013, 247: 128-146. |
48 | Raval M K, Patel J M, Parikh R K, et al. Studies on influence of polymers and excipients on crystallization behavior of metformin HCl to improve the manufacturability[J]. Particulate Science and Technology, 2014, 32(5): 431-444. |
49 | Heckel R W. Density-pressure relations in powder compaction[J]. Transactions of the Metallurgical Society of AIME, 1961, 221: 671-675. |
50 | Chatterjee A, Gupta M M, Shrivastava B, et al. Crystallo-co-agglomeration of valsartan for improved solubility and powder flowability[J]. Asian Journal of Pharmaceutics, 2018, 12(3): 182-195. |
51 | Chen M, Du S, Zhang T, et al. Spherical crystallization and the mechanism of clopidogrel hydrogen sulfate[J]. Chemical Engineering & Technology, 2018, 41(6): 1259-1265. |
52 | Patil A, Pore Y, Gavhane Y, et al. Spherical crystallization of ezetimibe for improvement in physicochemical and micromeritic properties[J]. Journal of Pharmaceutical Investigation, 2014, 44(3): 213-224. |
53 | Raval M K, Vaghela P D, Vachhani A N, et al. Role of excipients in the crystallization of albendazole[J]. Advanced Powder Technology, 2015, 26(4): 1102-1115. |
54 | Zhou X, Zhang Q, Xu R, et al. A novel spherulitic self-assembly strategy for organic explosives: modifying the hydrogen bonds by polymeric additives in emulsion crystallization[J]. Crystal Growth & Design, 2018, 18(4): 2417-2423. |
55 | Gao Y, Guan Y, Yang L, et al. Preparation of roxithromycin-polymeric microspheres by the emulsion solvent diffusion method for taste masking[J]. International Journal of Pharmaceutics, 2006, 318(1/2): 62-69. |
56 | Maghsoodi M, Taghizadeh O, Martin G P, et al. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique[J]. International Journal of Pharmaceutics, 2008, 351(1/2): 45-54. |
57 | Sarath C C, Thomas T, Kv V, et al. Crystallo-co-agglomeration: an effective tool to change the powder characteristics of indomethacin IP[J]. International Journal of Pharmacy and Pharmaceutical Research, 2016, 7(4): 197-207. |
58 | Blandin A F, Mangin D, Subero-Couroyer C, et al. Modelling of agglomeration in suspension: application to salicylic acid microparticles[J]. Powder Technology, 2005, 156(1): 19-33. |
59 | Zhang H, Chen Y, Wang J, et al. Investigation on the spherical crystallization process of cefotaxime sodium[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1402-1411. |
60 | Zhang H, Wang J, Chen Y, et al. Solubility of sodium cefotaxime in different solvents[J]. Journal of Chemical & Engineering Data, 2007, 52(3): 982-985. |
61 | Peña R, Jarmer D J, Burcham C L, et al. Further understanding of agglomeration mechanisms in spherical crystallization systems: benzoic acid case study[J]. Crystal Growth & Design, 2019, 19(3): 1668-1679. |
62 | Blandin A F, Mangin D, Rivoire A, et al. Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size[J]. Powder Technology, 2003, 130(1/2/3): 316-323. |
63 | Bausch A, Leuenberger H. Wet spherical agglomeration of proteins as a new method to prepare parenteral fast soluble dosage forms[J]. International Journal of Pharmaceutics, 1994, 101(1): 63-70. |
64 | Kawashima Y, Cui F, Takeuchi H, et al. Parameters determining the agglomeration behaviour and the micromeritic properties of spherically agglomerated crystals prepared by the spherical crystallization technique with miscible solvent systems[J]. International Journal of Pharmaceutics, 1995, 119(2): 139-147. |
65 | Nagy Z K, Fevotte G, Kramer H, et al. Recent advances in the monitoring, modelling and control of crystallization systems[J]. Chemical Engineering Research and Design, 2013, 91(10): 1903-1922. |
66 | Ramisetty K A, Pandit A B, Gogate P R. Ultrasound-assisted antisolvent crystallization of benzoic acid: effect of process variables supported by theoretical simulations[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17573-17582. |
67 | Subero-Couroyer C, Mangin D, Rivoire A, et al. Agglomeration in suspension of salicylic acid fine particles: analysis of the wetting period and effect of the binder injection mode on the final agglomerate size[J]. Powder Technology, 2006, 161(2): 98-109. |
68 | Zauner R, Jones A G. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system[J]. Chemical Engineering Science, 2000, 55(19): 4219-4232. |
69 | Simon L L, Merz T, Dubuis S, et al. In-situ monitoring of pharmaceutical and specialty chemicals crystallization processes using endoscopy-stroboscopy and multivariate image analysis[J]. Chemical Engineering Research and Design, 2012, 90(11): 1847-1855. |
70 | 龚俊波, 陈明洋, 黄翠, 等. 面向清洁生产的制药结晶[J]. 化工学报, 2015, 66(9): 3271-3278. |
Gong J B, Chen M Y, Huang C, et al. Clean production of pharmaceutical crystallization[J]. CIESC Journal, 2015, 66(9): 3271-3278. | |
71 | Kalny M, Pittermannova A, Zadrazil A, et al. Continuous production of spherical multicrystals by extractive crystallization in a droplet based fluidic device[J]. Crystal Growth & Design, 2017, 17(7): 3700-3706. |
72 | Maleky F, Marangoni A G. Process development for continuous crystallization of fat under laminar shear[J]. Journal of Food Engineering, 2008, 89(4): 399-407. |
73 | Nguyen A T, Kim J M, Chang S M, et al. Taylor vortex effect on phase transformation of guanosine 5-monophosphate in drowning-out crystallization[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4865-4872. |
74 | 朱明河, 张旭, 靳沙沙, 等. 球形和片状氯化钠晶习调控研究[J]. 化学工业与工程, 2018, 35(3): 55-61. |
Zhu M H, Zhang X, Jin S S, et al. Crystal habit regulation of spherical and plate-like sodium chloride [J]. Chemical Industry and Engineering, 2018,35(3): 55-61. | |
75 | Kadam S S, Mahadik K R, Paradkar A R. A process for making agglomerates for drug delivery systems: IN183481B[P]. 1997-02-14. |
76 | Yousef M A E, Vangala V R. Pharmaceutical cocrystals: molecules, crystals, formulations, medicines[J]. Crystal Growth & Design, 2019, 19(12): 7420-7438. |
77 | Tran P H L, Tran T T D. Dosage form designs for the controlled drug release of solid dispersions[J]. International Journal of Pharmaceutics, 2020, 581: 119274. |
78 | Jadhav N, Pawar A, Paradkar A. Design and evaluation of deformable talc agglomerates prepared by crystallo-co-agglomeration technique for generating heterogenous matrix[J]. AAPS PharmSciTech, 2007, 8(3): E61-E67. |
79 | Mahajan N M, Malghade A D, Dumore N G, et al. Design and development of crystallo-coagglomerates of ritonavir for the improvement of physicochemical properties[J]. Turkish Journal of Pharmaceutical Sciences, 2018, 15(3):248-255. |
80 | Sarfaraz M D, Khan K A, Doddayya H, et al. Particle design of aceclofenac-disintegrant agglomerates for direct compression by crystallo-co-agglomeration technique[J]. Asian Journal of Pharmacy and Technology, 2011, 1(2): 40-48. |
81 | Fan Y L, Cui F D, Yang M S, et al. Preparation of enteric microsphere of oleanolic acid dihemiphthalate sodium by salting-out action using spherical crystallization technique[J]. Acta Pharmaceutica Sinica, 2005, 40(3): 267-273. |
82 | Shi K, Jiang Y, Zhang M, et al. Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics[J]. Drug Delivery, 2010, 17(1): 1-10. |
[1] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[6] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[7] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[8] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[9] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[10] | 张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527. |
[11] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[12] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||