化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5735-5744.DOI: 10.11949/0438-1157.20200530
孙聪1(),闫博威1,蔡长庸1,韩振南1(),许光文1,2()
收稿日期:
2020-05-08
修回日期:
2020-06-30
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
韩振南,许光文
作者简介:
孙聪(1994—),男,硕士研究生,基金资助:
SUN Cong1(),YAN Bowei1,CAI Changyong1,HAN Zhennan1(),XU Guangwen1,2()
Received:
2020-05-08
Revised:
2020-06-30
Online:
2020-12-05
Published:
2020-12-05
Contact:
HAN Zhennan,XU Guangwen
摘要:
利用高温烟气加热实验室规模输送床模拟菱镁矿闪速轻烧工业输送床反应器,建立基于热重分析计算菱镁矿中MgCO3分解率方法,研究了煅烧条件和原料粒径对菱镁矿细粉输送床分解的转化率和产品活性的影响,揭示了煅烧过程中产物微观结构变化特性。菱镁矿粉(<150 μm)轻烧为秒级快速反应,仅需1~2 s菱镁矿中MgCO3分解率即可达98%以上,验证了输送床闪速轻烧技术的可行性。输送床煅烧产物的柠檬酸显色时间17~55 s,活性显著高于固定床煅烧产物(显色时间294 s),且产物活性由菱镁矿分解率和微观结构共同决定;煅烧过程中产物MgO晶粒尺寸逐渐增大,表面结构由疏松多孔变为致密光滑,该结构变化可在数秒内完成。
中图分类号:
孙聪,闫博威,蔡长庸,韩振南,许光文. 菱镁矿输送床轻烧过程反应与产物微观结构特性[J]. 化工学报, 2020, 71(12): 5735-5744.
SUN Cong,YAN Bowei,CAI Changyong,HAN Zhennan,XU Guangwen. Characteristics of reaction and product microstructure during light calcination of magnesite in transport bed[J]. CIESC Journal, 2020, 71(12): 5735-5744.
Composition | Content/%(mass) |
---|---|
MgO | 46.12 |
SiO2 | 0.58 |
Al2O3 | 1.27 |
CaO | 0.53 |
MnO | 0.01 |
Fe2O3 | 0.24 |
LOI① | 51.24 |
表1 菱镁矿原料化学组成
Table 1 Chemical compositions of magnesite
Composition | Content/%(mass) |
---|---|
MgO | 46.12 |
SiO2 | 0.58 |
Al2O3 | 1.27 |
CaO | 0.53 |
MnO | 0.01 |
Fe2O3 | 0.24 |
LOI① | 51.24 |
Particle size/μm | Temperature/℃ | Residence time /h | LOI/%(mass) | Coloration time/s |
---|---|---|---|---|
106~150 | 900 | 2 | 0.1 | 294 |
表2 菱镁矿马弗炉煅烧条件及产物性质
Table 2 Calcination conditions in muffle furnace and product property
Particle size/μm | Temperature/℃ | Residence time /h | LOI/%(mass) | Coloration time/s |
---|---|---|---|---|
106~150 | 900 | 2 | 0.1 | 294 |
Case | Feeding rate of magnesite/ (kg/h) | Bottom temperature of calcinator /℃ | Flow rate of propane/ (m3/h) | Flow rate of air / (m3/h) | Content of CO2 in flue gas/ % (vol.) | Flow rate of flue gas/ (m3/h) | Gas velocity in calcinatory/ (m/s) | Residence time /s |
---|---|---|---|---|---|---|---|---|
Case 1 | 1.2 | 850 | 1.05 | 64.18 | 4.18 | 75.36 | 9.7—12.3 | 0.91 |
Case 2 | 1.2 | 900 | 1.13 | 68.74 | 4.32 | 78.4 | 10.5—13.5 | 0.84 |
Case 3 | 1.2 | 950 | 1.25 | 71.25 | 4.71 | 79.67 | 10.9—14.2 | 0.79 |
Case 4 | 1.2 | 1000 | 1.33 | 74.83 | 4.98 | 80.96 | 11.4—15.2 | 0.75 |
表3 不同煅烧条件下输送床操作参数
Table 3 Operation parameters of transport bed under different calcination conditions
Case | Feeding rate of magnesite/ (kg/h) | Bottom temperature of calcinator /℃ | Flow rate of propane/ (m3/h) | Flow rate of air / (m3/h) | Content of CO2 in flue gas/ % (vol.) | Flow rate of flue gas/ (m3/h) | Gas velocity in calcinatory/ (m/s) | Residence time /s |
---|---|---|---|---|---|---|---|---|
Case 1 | 1.2 | 850 | 1.05 | 64.18 | 4.18 | 75.36 | 9.7—12.3 | 0.91 |
Case 2 | 1.2 | 900 | 1.13 | 68.74 | 4.32 | 78.4 | 10.5—13.5 | 0.84 |
Case 3 | 1.2 | 950 | 1.25 | 71.25 | 4.71 | 79.67 | 10.9—14.2 | 0.79 |
Case 4 | 1.2 | 1000 | 1.33 | 74.83 | 4.98 | 80.96 | 11.4—15.2 | 0.75 |
Number of calcination cycles | B① | D②/nm |
---|---|---|
1 | 0.81 | 10.5 |
2 | 0.72 | 12.3 |
3 | 0.64 | 13.3 |
4 | 0.63 | 13.8 |
表4 煅烧产物XRD谱图半峰宽和MgO晶粒尺寸
Table 4 Half-peak width of peak at 2θ=42.9° in XRD pattern and grain size of MgO crystal
Number of calcination cycles | B① | D②/nm |
---|---|---|
1 | 0.81 | 10.5 |
2 | 0.72 | 12.3 |
3 | 0.64 | 13.3 |
4 | 0.63 | 13.8 |
1 | 肖丽聪, 代淑娟. 我国菱镁矿现状及选矿方法的介绍[J]. 有色矿冶, 2017, 33(1): 29-31. |
Xiao L C, Dai S J. Introduction on the status of magnesite and its benefication methods in China[J]. Non-ferrous Mining and Metallurgy, 2017, 33(1): 29-31. | |
2 | 李广垠, 李志坚, 郭玉香, 等. 煅烧温度对轻烧镁粉显微结构与活性的影响[J]. 耐火材料, 2016, 50(5): 367-369. |
Li G Y, Li Z J, Guo Y X, et al. Effect of calcination temperatures on microstructure and activity light burned magnesite powder[J]. Refractories, 2016, 50(5): 367-369. | |
3 | 朱静, 叶楠, 杨家宽. 菱镁矿石制活性MgO的修正水化活性评价法[J]. 金属矿山, 2013, 42(11): 88-91. |
Zhu J, Ye N, Yang J K. Evaluation methods on corrected hydration activity in preparation of active MgO with calcined magnesite[J]. Metal Mine, 2013, 42(11): 88-91. | |
4 | Vandeperre L, Liska M, Al-Tabbaa A. Microstructures of reactive magnesia cement blends[J]. Cement and Concrete Composites, 2008, 30(8): 706-714. |
5 | Tsiplakou E, Pappas A, Mitsiopoulou C, et al. Evaluation of different types of calcined magnesites as feed supplement in small ruminant[J]. Small Ruminant Research, 2017, 149: 188-195. |
6 | Yang N, Ning P, Li K, et al. MgO-based adsorbent achieved from magnesite for CO2 capture in simulate wet flue gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86: 73-80. |
7 | Stefanidis S, Karakoulia S, Kalogiannis K, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
8 | Mo L W, Panesar D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cement and Concrete Research, 2012, 42(6): 769-777. |
9 | 巴浩静, 白丽梅, 赵文青, 等. 轻烧氧化镁制备及深加工研究进展[J]. 矿产保护与利用, 2017, 1: 84-89. |
Ba H J, Bai L M, Zhao W Q, et al. Review on preparation and processing of caustic magnesite[J]. Conservation and Utilization of Mineral Resources, 2017, 1: 84-89. | |
10 | Bai L, Ma Y, Zhao W, et al. Optimization and mechanism in preparing active magnesium oxide from magnesite[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 1103-1109. |
11 | 刘欣伟, 冯雅丽, 李浩然, 等. 菱镁矿制备轻烧氧化镁及其水化动力学研究[J]. 中南大学学报(自然科学版), 2011, 42(12): 3912-3917. |
Liu X W, Feng Y L, Li H R, et al. Preparation of light-burned magnesia from magnesite and its hydration kinetics[J]. Journal Central South University (Science and Technology), 2011, 42(12): 3912-3917. | |
12 | van der Merwe E, Strydom C, Botha A. Hydration of medium reactive industrial magnesium oxide with magnesium acetate[J]. Journal of Thermal Analysis and Calorimetry, 2004, 77(1): 49-56. |
13 | Erşahan H, Ekmekyapar A, Sevim F. Flash calcination of a magnesite ore in a free-fall reactor and leaching of magnesia[J]. International Journal of Mineral Processing, 1994, 42(1/2): 121-136. |
14 | 李晓辉, 唐亚昆, 高莎莎, 等. 新疆尖山菱镁矿制备轻烧氧化镁的煅烧工艺[J]. 硅酸盐通报, 2018, 37(1): 73-79. |
Li X H, Tang Y K, Gao S S, et al. Calcining process of light-burned magnesia based on Xinjiang Jianshan Magnesite[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 73-79. | |
15 | Eubank W R. Calcination studies of magnesium oxides[J]. Journal of the American Ceramic Society, 1951, 34(8): 225-229. |
16 | Mo L W, Deng M, Tang M S. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials[J]. Cement and Concrete Research, 2010, 40(3): 437-446. |
17 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2007: 150-152. |
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2007: 150-152. | |
18 | 姜微微, 郝文倩, 刘雪景, 等. 微型流化床内菱镁矿轻烧反应特征及动力学[J]. 化工学报, 2019, 70(8): 2928-2937. |
Jiang W W, Hao W Q, Liu X J, et al. Characteristic and kinetics of light calcination of magnesite in micro fluidized bed reaction analyzer[J]. CIESC Journal, 2019, 70(8): 2928-2937. | |
19 | 宁志强, 翟玉春, 孙立芹, 等. 氢氧化镁分解动力学的研究[J]. 分子科学学报, 2009, 25(1): 27-30. |
Ning Z Q, Zhai Y C, Sun L Q, et al. Study on the thermal decomposition kinetics of magnesium hydroxide[J]. Journal of Molecular Science, 2009, 25(1): 27-30. | |
20 | Teklay A, Yin C, Rosendahl L. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: a way to reduce CO2 footprint from cement industry[J]. Applied Energy, 2016, 162: 1218-1224. |
21 | 赖登国, 战金辉, 陈兆辉, 等. 内构件移动床固体热载体油页岩热解技术[J]. 化工学报, 2017, 68(10): 3647-3657. |
Lai D G, Zhan J H, Chen Z H, et al. Oil shale pyrolysis by solid heat carrier in internal-structured moving bed[J]. CIESC Journal, 2017, 68(10): 3647-3657. | |
22 | 卢仁红. 高温悬浮态下石灰石与菱镁矿热分解特性比较及动力学研究[J]. 水泥工程, 2018, 31(2): 13-16. |
Lu R H. Comparison of decomposition characteristics and kineties of magnesite with limestone under temperature suspension state[J]. Cement Engineering, 2018, 31(2): 13-16. | |
23 | 张勇, 丁爽. 白云石的热分解对氧化镁活性的影响[J]. 化工矿物与加工, 2008, 37(4): 9-11. |
Zhang Y, Ding S. Study on impact of thermal decomposition of dolomite on MgO activity[J]. Industrial Minerals & Processing, 2008, 37(4): 9-11. | |
24 | Mo L W, Deng M, Tang M S. Effect of calcination temperature on the microstructure, activity and expansion of MgO-type expansive additive used in cement-based materials[J]. Key Engineering Materials, 2009, 400/401/402: 169-174. |
25 | 孙华文, 崔崇, 张宏华, 等. MgO的晶粒大小和晶格畸变与水化活性的关系[J]. 武汉工业大学学报, 1991, 13(4): 21-24. |
Sun H W, Cui C, Zhang H H, et al. Relationship between crystalline size and lattice distortion of MgO and its activity[J]. Journal of Wuhan University of Technology, 1991, 13(4): 21-24. | |
26 | 李楠, 陈荣荣. 菱镁矿煅烧过程中氧化镁烧结与晶体生长与动力学的研究[J]. 硅酸盐学报, 1989, 17(1): 64-69. |
Li N, Chen R R. Kinetics of sinteringand grain growth of MgO during calcination of magnesite[J]. Journal of the Chinese Ceramic Society, 1989, 17(1): 64-69. | |
27 | Gao Q Y, Wei G, Jiang X, et al. Characteristics of calcined magnesite and its application in oxidized pellet production[J]. Journal of Iron and Steel Research International, 2014, 21(4): 408-412. |
28 | Liu B, Thomas P, Ray A, et al. A TG analysis of the effect of calcination conditions on the properties of reactive magnesia[J]. Journal of Thermal Analysis and Calorimetry, 2007, 88(1): 145-149. |
29 | 高强健, 姜鑫, 沈峰满, 等. 轻烧菱镁石制备与表征及其对球团生球质量的影响[J]. 东北大学学报(自然科学版), 2017, 38(3): 370-374. |
Gao Q J, Jiang X, Shen F M, et al. Preparing and characterization for caustic calcined magnesite and its effect on quality of green-pellets[J]. Journal of Northeastern University (Natural Science), 2017, 38(3): 370-374. | |
30 | 徐玲玲, 杨南如, 陶洪亮, 等. MgO活性对氯镁石材料开裂和耐水性的影响[J]. 硅酸盐学报, 2003, 31(8): 759-769. |
Xu L L, Yang N R, Tao H L, et al. Effect of chemical activity of MgO on cracking and water-resistance of magnesium oxycloride materials[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 759-769. |
[1] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[4] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[5] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[6] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[7] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[8] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[9] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[10] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[11] | 王倩, 李神勇, 康帅, 庞薇, 郝龙龙, 秦身钧. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032. |
[12] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[13] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[14] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[15] | 王刚, 夏志豪, 李希艳, 张虹, 韩振南, 宋兴飞, 许光文. 不同气氛下流化床菱镁矿轻烧产物特性研究[J]. 化工学报, 2022, 73(8): 3699-3707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||