化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5681-5695.DOI: 10.11949/0438-1157.20200673
收稿日期:
2020-05-26
修回日期:
2020-07-28
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
汤健
作者简介:
乔俊飞(1968—),男,教授,基金资助:
QIAO Junfei1,2(),GUO Zihao1,2,3,TANG Jian1,2()
Received:
2020-05-26
Revised:
2020-07-28
Online:
2020-12-05
Published:
2020-12-05
Contact:
TANG Jian
摘要:
针对获取复杂工业过程的难以检测质量或环境污染指标数据的时间和经济成本高导致有标记建模样本稀缺的问题,提出了基于改进大趋势扩散和隐含层插值的虚拟样本生成(VSG)方法,并将其应用于城市固废焚烧过程的二英(DXN)排放预测。首先,采用基于子区域欧氏距离改进大趋势扩散(MTD)方法对真实样本输入/输出空间进行扩展;接着,采用等间隔插值方式生成虚拟样本输入,再结合映射模型和删减机制获得虚拟样本输出;然后,采用基于正则化改进的随机权神经网络隐含层插值依次得到虚拟样本输出和输入,再结合扩展空间对虚拟样本进行删减;最后,将上述具有互补性的虚拟样本与原始真实样本进行混合,实现建模数据容量扩充。通过基准数据集和工业过程DXN数据验证了所提方法的有效性和合理性。
中图分类号:
乔俊飞,郭子豪,汤健. 基于改进大趋势扩散和隐含层插值的虚拟样本生成方法及应用[J]. 化工学报, 2020, 71(12): 5681-5695.
QIAO Junfei,GUO Zihao,TANG Jian. Virtual sample generation method based on improved megatrend diffusion and hidden layer interpolation with its application[J]. CIESC Journal, 2020, 71(12): 5681-5695.
项目 | 混凝土抗压强度/MPa |
---|---|
ymax | 79.99 |
yvsg-max | 100.472 |
上限扩展率 | 25.61% |
ymin | 6.88 |
yvsg-min | 0 |
下限扩展率 | 100% |
表1 基准数据扩展输出空间与原始输出空间的对比
Table 1 Comparison of extended output space and original output space for Benchmark data
项目 | 混凝土抗压强度/MPa |
---|---|
ymax | 79.99 |
yvsg-max | 100.472 |
上限扩展率 | 25.61% |
ymin | 6.88 |
yvsg-min | 0 |
下限扩展率 | 100% |
样本 | 浓度/(kg/m3) | 龄期/d | 混凝土抗压强度/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
水泥 | 高炉渣 | 粉煤灰 | 水 | 超塑化剂 | 粗集料 | 细集料 | |||
第1组数据 | 540 | 0 | 0 | 162 | 2.5 | 1040 | 676 | 28 | 37.104 |
第2组数据 | 332.5 | 142.5 | 0 | 228 | 0 | 932 | 594 | 180 | 30.674 |
第1组生成样本 | 488.125 | 35.625 | 0 | 178.5 | 1.875 | 1013 | 655.5 | 66 | 39.207 |
第2组生成样本 | 436.25 | 71.25 | 0 | 195 | 1.25 | 986 | 635 | 104 | 41.31 |
第3组生成样本 | 384.375 | 106.875 | 0 | 211.5 | 0.625 | 959 | 614.5 | 142 | 35.992 |
备注 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输出 |
表2 基准数据等间隔策略生成虚拟样本的输入/输出(以n=3时第1和2组样本为例)
Table 2 Input and output of virtual samples generated based on equal interval method for Benchmark data (taking the first and second samples with n=3 as example)
样本 | 浓度/(kg/m3) | 龄期/d | 混凝土抗压强度/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
水泥 | 高炉渣 | 粉煤灰 | 水 | 超塑化剂 | 粗集料 | 细集料 | |||
第1组数据 | 540 | 0 | 0 | 162 | 2.5 | 1040 | 676 | 28 | 37.104 |
第2组数据 | 332.5 | 142.5 | 0 | 228 | 0 | 932 | 594 | 180 | 30.674 |
第1组生成样本 | 488.125 | 35.625 | 0 | 178.5 | 1.875 | 1013 | 655.5 | 66 | 39.207 |
第2组生成样本 | 436.25 | 71.25 | 0 | 195 | 1.25 | 986 | 635 | 104 | 41.31 |
第3组生成样本 | 384.375 | 106.875 | 0 | 211.5 | 0.625 | 959 | 614.5 | 142 | 35.992 |
备注 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输入 | 样本输出 |
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 292.664 | 70.481 | -69.88 | 175.089 | 2.292 | 802.293 | 543.142 | -35.603 | 44.01 |
2 | 278.301 | 93.42 | -49.115 | 181.486 | 4.993 | 819.112 | 511.977 | -62.01 | 44.053 |
3 | 250.453 | 99.612 | -31.037 | 187.579 | 5.812 | 802.988 | 520.632 | -79.17 | 41.626 |
4 | 233.829 | 75.385 | -36.606 | 185.512 | 3.208 | 763.418 | 569.621 | -64.189 | 38.377 |
5 | 103.508 | -17.664 | -29.344 | 153.978 | -2.336 | 735.579 | 592.56 | -21.546 | 41.288 |
合格比率 | 100% | 80% | 0% | 100% | 80% | 100% | 80% | 0% | 100% |
表3 基准数据未加入正则化项基于多组隐含层插值法的虚拟样本输入/输出结果(以前5组为例)
Table 3 Virtual sample input and output results based on multiple sets of hidden layer interpolation method without regularization term for Benchmark data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 292.664 | 70.481 | -69.88 | 175.089 | 2.292 | 802.293 | 543.142 | -35.603 | 44.01 |
2 | 278.301 | 93.42 | -49.115 | 181.486 | 4.993 | 819.112 | 511.977 | -62.01 | 44.053 |
3 | 250.453 | 99.612 | -31.037 | 187.579 | 5.812 | 802.988 | 520.632 | -79.17 | 41.626 |
4 | 233.829 | 75.385 | -36.606 | 185.512 | 3.208 | 763.418 | 569.621 | -64.189 | 38.377 |
5 | 103.508 | -17.664 | -29.344 | 153.978 | -2.336 | 735.579 | 592.56 | -21.546 | 41.288 |
合格比率 | 100% | 80% | 0% | 100% | 80% | 100% | 80% | 0% | 100% |
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
表4 基准数据加入正则化项基于多组隐含层插值法的虚拟输入/输出结果(以前5组样本为例)
Table 4 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with adding regularization term for Benchmark data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
n | Xinsert | Yinsert | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
表5 基准数据删减后的基于多组隐含层插值法的虚拟样本输入/输出结果(以前5组样本为例)
Table 5 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with deletion operation for Benchmark data (taking the former five samples as example)
n | Xinsert | Yinsert | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 583.657 | 271.588 | 197.941 | 234.288 | 18.838 | 1172.991 | 934.768 | 201.621 | 35.034 |
2 | 584.102 | 271.682 | 197.839 | 234.446 | 18.824 | 1172.598 | 934.191 | 201.648 | 34.975 |
3 | 584.548 | 271.775 | 197.736 | 234.604 | 18.809 | 1172.206 | 933.614 | 201.674 | 34.915 |
4 | 584.994 | 271.869 | 197.633 | 234.762 | 18.795 | 1171.813 | 933.037 | 201.7 | 34.856 |
5 | 585.439 | 271.962 | 197.53 | 234.921 | 18.78 | 1171.42 | 932.46 | 201.727 | 34.796 |
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 23.599 | 13.226 | — | — | — | — |
B | 60 | 18.370 | 11.330 | 16.577 | 6 | — | — |
C | 161 | 16.156 | 8.831 | 14.525 | 3 | — | 6 |
D | 29 | 21.128 | 112.204 | 15.498 | 1 | 1 | 3 |
E | 32 | 19.780 | 93.273 | 14.466 | 2 | 1 | 3 |
F | 729 | 16.134 | 9.692 | 13.383 | 6 | 2 | 8 |
表6 基准数据实验结果比较
Table 6 Comparison of experimental results for Benchmark data
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 23.599 | 13.226 | — | — | — | — |
B | 60 | 18.370 | 11.330 | 16.577 | 6 | — | — |
C | 161 | 16.156 | 8.831 | 14.525 | 3 | — | 6 |
D | 29 | 21.128 | 112.204 | 15.498 | 1 | 1 | 3 |
E | 32 | 19.780 | 93.273 | 14.466 | 2 | 1 | 3 |
F | 729 | 16.134 | 9.692 | 13.383 | 6 | 2 | 8 |
图8 DXN数据原始小样本空间与扩展空间对比(以前5组特征变量为例)
Fig.8 Comparison between original small sample space and extended space (taking the former 5 input features as example) for DXN data
项目 | DXN浓度/(ng TEQ/m3) |
---|---|
ymax | 0.083 |
yvsg-max | 0.133 |
上限扩展率 | 60.24% |
ymin | 0.002 |
yvsg-min | 0 |
下限扩展率 | 100% |
表7 DXN数据扩展输出空间与原始输出空间的对比
Table 7 Comparison between extended output space and original output space for DXN data
项目 | DXN浓度/(ng TEQ/m3) |
---|---|
ymax | 0.083 |
yvsg-max | 0.133 |
上限扩展率 | 60.24% |
ymin | 0.002 |
yvsg-min | 0 |
下限扩展率 | 100% |
样本 | 反应器入口氧气 浓度/% | 燃烧炉排右空气 流量×10-3/(m3/h) | 二次空预器出口 温度/℃ | 干燥炉排入口空气 温度/℃ | 燃烧炉排左侧 温度/℃ | DXN浓度/ (ng TEQ/m3) |
---|---|---|---|---|---|---|
第1组数据 | 4.8 | 1.5 | 14 | 176 | 181 | 0.05 |
第2组数据 | 3.2 | 3.4 | 24 | 180 | 198 | 0.035 |
第1组生成样本 | 12.054 | 5.184 | 33.801 | 209.677 | 257.477 | 0.036 |
第2组生成样本 | 12.244 | 5.261 | 34.361 | 211.212 | 259.972 | 0.0362 |
第3组生成样本 | 12.435 | 5.338 | 34.921 | 212.748 | 262.468 | 0.0364 |
备注 | 样本输入(DXN变量1) | 样本输入(DXN变量2) | 样本输入(DXN变量3) | 样本输入(DXN变量4) | 样本输入(DXN变量5) | 样本输出 |
表8 DXN数据基于等间隔法生成的虚拟样本输入/输出结果(以n=3时第1和2组样本为例)
Table 8 Virtual samples input and output based on generated at equal interval method (taking the first and second samples with n=3 as example) for DXN data
样本 | 反应器入口氧气 浓度/% | 燃烧炉排右空气 流量×10-3/(m3/h) | 二次空预器出口 温度/℃ | 干燥炉排入口空气 温度/℃ | 燃烧炉排左侧 温度/℃ | DXN浓度/ (ng TEQ/m3) |
---|---|---|---|---|---|---|
第1组数据 | 4.8 | 1.5 | 14 | 176 | 181 | 0.05 |
第2组数据 | 3.2 | 3.4 | 24 | 180 | 198 | 0.035 |
第1组生成样本 | 12.054 | 5.184 | 33.801 | 209.677 | 257.477 | 0.036 |
第2组生成样本 | 12.244 | 5.261 | 34.361 | 211.212 | 259.972 | 0.0362 |
第3组生成样本 | 12.435 | 5.338 | 34.921 | 212.748 | 262.468 | 0.0364 |
备注 | 样本输入(DXN变量1) | 样本输入(DXN变量2) | 样本输入(DXN变量3) | 样本输入(DXN变量4) | 样本输入(DXN变量5) | 样本输出 |
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | -1.839 | -0.766 | 4.944 | 84.585 | 90.561 | 0.0417 |
2 | -1.862 | -0.749 | 4.963 | 84.512 | 90.128 | 0.0413 |
3 | -1.885 | -0.731 | 4.982 | 84.439 | 89.695 | 0.0409 |
4 | -1.908 | -0.714 | 5 | 84.365 | 89.263 | 0.0405 |
5 | -1.931 | -0.697 | 5.019 | 84.292 | 88.83 | 0.0401 |
合格比率 | 100% | 0% | 100% | 100% | 100% | 100% |
表9 DXN数据未加入正则化项基于多组隐含层插值法的输入/输出结果(以前5组样本为例)
Table 9 Input and output results based on multiple groups of hidden layer interpolation method without regularization term for DXN data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | -1.839 | -0.766 | 4.944 | 84.585 | 90.561 | 0.0417 |
2 | -1.862 | -0.749 | 4.963 | 84.512 | 90.128 | 0.0413 |
3 | -1.885 | -0.731 | 4.982 | 84.439 | 89.695 | 0.0409 |
4 | -1.908 | -0.714 | 5 | 84.365 | 89.263 | 0.0405 |
5 | -1.931 | -0.697 | 5.019 | 84.292 | 88.83 | 0.0401 |
合格比率 | 100% | 0% | 100% | 100% | 100% | 100% |
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% |
表10 DXN数据加入正则化项基于多组隐含层插值法的输入/输出结果(以前5组样本为例)
Table 10 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with adding regularization term for DXN data (taking the former five samples as example)
n | Xinsert-temp | Yinsert-temp | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
合格比率 | 100% | 100% | 100% | 100% | 100% | 100% |
n | Xinsert | Yinsert | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
表11 DXN数据删减后的基于多组隐含层插值法的虚拟样本输入/输出结果(以前5组样本为例)
Table 11 Virtual sample input and output results based on multiple sets of hidden layer interpolation method with deletion operation for DXN data (taking the former five samples as example)
n | Xinsert | Yinsert | ||||
---|---|---|---|---|---|---|
1 | 12.584 | 5.416 | 33.933 | 214.927 | 262.392 | 0.0498 |
2 | 12.603 | 5.431 | 33.986 | 214.748 | 262.18 | 0.0493 |
3 | 12.622 | 5.446 | 34.039 | 214.568 | 261.969 | 0.0488 |
4 | 12.641 | 5.461 | 34.091 | 214.388 | 261.757 | 0.0483 |
5 | 12.66 | 5.476 | 34.144 | 214.209 | 261.545 | 0.0478 |
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 0.0383 | 0.000203 | — | — | — | |
B | 136 | 0.0440 | 0.000220 | 0.0379 | 8 | ||
C | 61 | 0.0304 | 1.108×10-5 | 14.525 | 2 | — | 2 |
D | 436 | 0.0288 | 2.532×10-5 | 0.0255 | 2 | 9 | 3 |
E | 81 | 0.0289 | 2.073×10-5 | 0.0255 | 1 | 2 | 6 |
F | 501 | 0.0286 | 1.697×10-5 | 0.0254 | 5 | 1 | 7 |
表12 DXN数据实验结果比较
Table 12 Comparison of experimental results for DXN data
实验 | 虚拟样本数量 | RMSE均值 | RMSE方差 | 最佳RMSE及插值参数 | |||
---|---|---|---|---|---|---|---|
数值 | |||||||
A | 0 | 0.0383 | 0.000203 | — | — | — | |
B | 136 | 0.0440 | 0.000220 | 0.0379 | 8 | ||
C | 61 | 0.0304 | 1.108×10-5 | 14.525 | 2 | — | 2 |
D | 436 | 0.0288 | 2.532×10-5 | 0.0255 | 2 | 9 | 3 |
E | 81 | 0.0289 | 2.073×10-5 | 0.0255 | 1 | 2 | 6 |
F | 501 | 0.0286 | 1.697×10-5 | 0.0254 | 5 | 1 | 7 |
1 | Qiao J F, Guo Z H, Tang J. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: a survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. |
2 | Di A B, Fortuna L, Graziani S, et al. Development of a soft sensor for a thermal cracking unit using a small experimental data set[C]//2007 IEEE International Symposium on Intelligent Signal Processing. IEEE, 2007: 1-6. |
3 | Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. |
4 | Liu Y, Sun W, Liu J. Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis[J]. Waste Management, 2017, 68: 653-661. |
5 | Bai J, Sun X, Zhang C, et al. Mechanism and kinetics study on the ozonolysis reaction of 2, 3, 7, 8-TCDD in the atmosphere[J]. Journal of Environmental Sciences, 2014, 26(1): 181-188. |
6 | Zhang H J, Ni Y W, Chen J P, et al. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator[J]. Chemosphere, 2008, 70(4): 721-730. |
7 | Martens H A, Dardenne P. Validation and verification of regression in small data sets[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1/2): 99-121. |
8 | Deng J L. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5): 288-294. |
9 | Chang C J, Li D C, Huang Y H, et al. A novel gray forecasting model based on the box plot for small manufacturing data sets[J]. Applied Mathematics and Computation, 2015, 265: 400-408. |
10 | Chervonenkis A I A, Vapnik V N. Theory of uniform convergence of frequencies of events to their probabilities and problems of search for an optimal solution from empirical data[J]. Automation and Remote Control, 1971, 32: 207-217. |
11 | Poggio T, Vetter T. Recognition and structure from one 2D model view: observations on prototypes, object classes and symmetries[R]. Technical Report A. I. Memo 1347. Massachusetts Institute of Technology Cambridge, MA, USA, 1992. |
12 | Niyogi P, Girosi F, Poggio T. Incorporating prior information in machine learning by creating virtual examples[J]. Proceedings of the IEEE, 1998, 86(11): 2196-2209. |
13 | Ho K I J, Leung C S, Sum J. Convergence and objective functions of some fault/noise-injection-based online learning algorithms for RBF networks[J]. IEEE Transactions on Neural Networks, 2010, 21(6): 938-947. |
14 | Song H, Choi K K, Lee I, et al. Adaptive virtual support vector machine for reliability analysis of high-dimensional problems[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 479-491. |
15 | Li L J, Peng Y, Qiu G Y, et al. A survey of virtual sample generation technology for face recognition[J]. Artificial Intelligence Review, 2018, 50 (1): 1-20. |
16 | Chang C J, Li D C, Chen C C, et al. A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities[J]. Computers & Industrial Engineering, 2014, 67(1): 139-145. |
17 | Li D C, Lin Y S. Using virtual sample generation to build up management knowledge in the early manufacturing stages[J]. European Journal of Operational Research, 2005, 175(1): 413-434. |
18 | Li D C, Wen I H. A genetic algorithm-based virtual sample generation technique to improve small data set learning[J]. Neurocomputing, 2014, 143(16): 222-230. |
19 | Chen Z S, Zhu B, He Y L, et al. PSO based virtual sample generation method for small sample sets: applications to regression datasets[J]. Engineering Applications of Artificial Intelligence, 2017, 59: 236-243. |
20 | Gong H F, Chen Z S, Zhu Q X, et al. A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: an empirical study of petrochemical industries[J]. Applied Energy, 2017, 197: 405-415. |
21 | Coqueret G. Approximate NORTA simulations for virtual sample generation[J]. Expert Systems with Applications, 2017, 73: 69-81. |
22 | 朱宝. 虚拟样本生成技术及建模应用研究[D]. 北京: 北京化工大学, 2017. |
Zhu B. Research on virtual sample generation technologies and their modeling application[D].Beijing: Beijing University of Chemical Technology, 2017. | |
23 | Wang F Y. A big-data perspective on AI: Newton, Merton, and analytics intelligence[J]. IEEE Intelligent Systems, 2012, 27(5): 24-34. |
24 | Zhu Q, Chen Z, Zhang X. et al. Dealing with small sample size problems in process industry using virtual sample generation: a Kriging-based approach[J]. Soft Computing, 2020, 24: 6889-6902. |
25 | Tang J, Jia M Y, Liu Z, et al. Modeling high dimensional frequency spectral data based on virtual sample generation technique[C]//IEEE International Conference on Information and Automation. IEEE, 2015: 1090-1095. |
26 | 汤健, 乔俊飞, 柴天佑, 等.基于虚拟样本生成技术的多组分机械信号建模[J]. 自动化学报, 2018, 44(9): 1569-1589. |
Tang J, Qiao J F, Chai T Y, et al. Modeling multiple components mechanical signals by means of virtual sample generation technique[J]. Acta Automatica Sinica, 2018, 44(9): 1569-1589. | |
27 | Li D C, Wu C S, Tsai T I, et al. Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge[J]. Computers & Operations Research, 2007, 34(4): 966-982. |
28 | Huang G, Huang G B, Song S, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48. |
29 | 朱宝, 乔俊飞.基于AANN特征缩放的虚拟样本生成方法及其过程建模应用[J]. 计算机与应用化学, 2019, 36(4): 304-307. |
Zhu B, Qiao J F. Novel virtual sample generation based on feature scaling of auto-associative neural network and its applications to process modeling[J]. Computers and Applied Chemistry, 2019, 36(4): 304-307. | |
30 | Yang J, Yu X, Xie Z Q, et al. A novel virtual sample generation method based on Gaussian distribution[J]. Knowledge-Based Systems, 2011, 24(6): 740-748. |
31 | Guo Y, Chen T, Yang J, et al. Study on on-line detection of dioxins based on correlation model[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3524-3529. |
32 | Li A D, Hong W, Wang J. Online detection of dioxin and dioxin-related substances using laser desoption / laser ionization-mass spectrometry[J]. Journal of Yanshan University, 2015, 39(6): 511-515 |
33 | Bunsan S, Chen W Y, Chen H W, et al. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks[J]. Chemosphere, 2013, 92(3): 258-264. |
34 | Xiao X D, Lu J W, Hai J, et al. Prediction of dioxin emissions in flue gas from waste incineration based on support vector regression[J]. Renewable Energy Resources, 2017, 35(8): 1107-1114. |
35 | Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706. |
36 | Chang N B, Chen W C. Prediction of PCDDs/PCDFs emissions from municipal incinerators by genetic programming and neural network modeling[J]. Waste Management and Research, 2000, 18(4): 341-351. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[7] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[8] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[11] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[12] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||