化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2300-2308.DOI: 10.11949/0438-1157.20200981
陆鹏飞1,2(),金志浩1(),崔彦斌2,许光文1,2,武荣成2()
收稿日期:
2020-07-20
修回日期:
2020-09-29
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
金志浩,武荣成
作者简介:
陆鹏飞(1995—),男,硕士研究生,基金资助:
LU Pengfei1,2(),JIN Zhihao1(),CUI Yanbin2,XU Guangwen1,2,WU Rongcheng2()
Received:
2020-07-20
Revised:
2020-09-29
Online:
2021-04-05
Published:
2021-04-05
Contact:
JIN Zhihao,WU Rongcheng
摘要:
以轮胎半焦为碳源,石英砂为硅源,在1520℃下通过碳热还原法制备了碳化硅。采用XRD、SEM和红外光谱仪等对不同原料粒度条件下制备的碳化硅进行了表征,探究了原料粒度对合成碳化硅物相、形貌、粒度和反应程度的影响规律。结果表明:原料粒度对碳化硅的合成反应进行程度及产物碳化硅的物相组成、形貌、粒度均有十分重要的影响。在一定粒度范围内,随着石英砂粒度的减小,碳化硅晶型变完整,且晶须逐渐减少,碳化硅的粒径分布没有明显变化;随着轮胎半焦粒度的增大,产物物相逐渐变为单一,碳化硅的粒径和晶须所占的比例逐渐减小。此外,通过对产物中C/Si 比的测定和存在中间产物SiO的证实,推测出了碳化硅颗粒的生成机理为气-固(VS)反应,而碳化硅晶须的生成机理为气-气(VV)反应。
中图分类号:
陆鹏飞, 金志浩, 崔彦斌, 许光文, 武荣成. 原料粒度对合成碳化硅的影响研究[J]. 化工学报, 2021, 72(4): 2300-2308.
LU Pengfei, JIN Zhihao, CUI Yanbin, XU Guangwen, WU Rongcheng. Effect of raw material size on the synthesis of silicon carbide[J]. CIESC Journal, 2021, 72(4): 2300-2308.
Proximate analysis war/% | BET/ (m2/g) | Ultimate analysis war/% | ||||||
---|---|---|---|---|---|---|---|---|
Fixed carbon | Ash | Volatile | Water | C | H | N | S | |
82.41 | 12.56 | 3.22 | 1.81 | 61.16 | 84.67 | 0.42 | 0.32 | 2.19 |
表1 轮胎半焦的工业分析结果和元素分析
Table 1 Industrial analysis results and elemental analysis of tire semi-coke
Proximate analysis war/% | BET/ (m2/g) | Ultimate analysis war/% | ||||||
---|---|---|---|---|---|---|---|---|
Fixed carbon | Ash | Volatile | Water | C | H | N | S | |
82.41 | 12.56 | 3.22 | 1.81 | 61.16 | 84.67 | 0.42 | 0.32 | 2.19 |
Compositin | Content wd/% |
---|---|
SiO2 | 99.54 |
CaO | 0.06 |
Fe2O3 | 0.13 |
Al2O3 | 0.11 |
MgO | 0.08 |
burn reduces | 0.08 |
表2 石英砂的化学分析结果
Table 2 Results of chemical analysis of silicon sand
Compositin | Content wd/% |
---|---|
SiO2 | 99.54 |
CaO | 0.06 |
Fe2O3 | 0.13 |
Al2O3 | 0.11 |
MgO | 0.08 |
burn reduces | 0.08 |
Silica sand size/mesh | Reaction loss rate, wtf/% | Reaction loss rate, wmf/% | Productive rate, w/% |
---|---|---|---|
20—40 | 28.31 | 40.48 | 52.33 |
50—80 | 66.99 | 0.58 | 91.05 |
100—120 | 65.03 | 2.41 | 86.41 |
140—160 | 63.05 | 7.53 | 81.65 |
表3 不同粒度石英砂对应的样品烧失率和产率
Table 3 The burning loss rate and yield of silicon sand samples with different particle size
Silica sand size/mesh | Reaction loss rate, wtf/% | Reaction loss rate, wmf/% | Productive rate, w/% |
---|---|---|---|
20—40 | 28.31 | 40.48 | 52.33 |
50—80 | 66.99 | 0.58 | 91.05 |
100—120 | 65.03 | 2.41 | 86.41 |
140—160 | 63.05 | 7.53 | 81.65 |
Materials | Raw material particle size/mesh | Average particle size of SiC/μm |
---|---|---|
tire semi-coke | 20—35 | 161.8 |
140—160 | 53.353 | |
270—325 | 42.106 | |
silica sand | 50—80 | 37.679 |
100—120 | 40.015 | |
140—160 | 38.473 |
表4 不同粒度的原料制备的碳化硅的平均粒径
Table 4 Average particle size of SiC prepared from raw materials with different particle size
Materials | Raw material particle size/mesh | Average particle size of SiC/μm |
---|---|---|
tire semi-coke | 20—35 | 161.8 |
140—160 | 53.353 | |
270—325 | 42.106 | |
silica sand | 50—80 | 37.679 |
100—120 | 40.015 | |
140—160 | 38.473 |
1 | Chiew Y L, Cheong K Y. A review on the synthesis of SiC from plant-based biomasses[J]. Materials Science and Engineering: B, 2011, 176(13): 951-964. |
2 | Siergiej R R, Clarke R C, Sriram S, et al. Advances in SiC materials and devices: an industrial point of view[J]. Materials Science and Engineering: B, 1999, 61/62: 9-17. |
3 | 李冬燕, 魏巍, 韩峰. 高温除尘碳化硅膜的制备及其抗腐蚀特性[J]. 化工学报, 2019, 70(1): 336-344. |
Li D Y, Wei W, Han F. Preparation and corrosion resistance of SiC membrane using for dust removal in high temperature[J]. CIESC Journal, 2019, 70(1): 336-344. | |
4 | Fu Q G, Li H J, Shi X H, et al. Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst[J]. Materials Chemistry and Physics, 2005, 100(1): 108-111. |
5 | Guo X Y, Jin G Q. Pore-size control in the sol-gel synthesis of mesoporous silicon carbide[J]. Journal of Materials Science, 2005, 40(5): 1301-1303. |
6 | Yang W, Araki H, Thaveethavorn S, et al. In situ synthesis and characterization of pure SiC nanowires on silicon wafer[J]. Applied Surface Science, 2005, 241(1/2): 236-240. |
7 | 刘巧钰, 李洪, 高鑫, 等. 泡沫碳化硅波纹规整填料内的液体流动特性[J]. 化工学报, 2016, 67(8): 3340-3346. |
Liu Q Y, Li H, Gao X, et al. Liquid flow characteristics of structured corrugation SiC-foam packing sheets[J]. CIESC Journal, 2016, 67(8): 3340-3346. | |
8 | Najafi A, Fard F G, Rezaie H R, et al. Synthesis and characterization of SiC nano powder with low residual carbon processed by sol-gel method[J]. Powder Technology, 2012, 219: 202-210. |
9 | Lao X B, Xu X Y, Jiang W H, et al. Effect of SiC nanoparticles on in-situ synthesis of SiC whiskers in corundum-mullite-SiC composites obtained by carbothermal reduction[J]. Ceramics International, 2020, 46(7): 9225-9232. |
10 | Kuang J L, Xiao T, Hou X J, et al. Microwave synthesis of worm-like SiC nanowires for thin electromagnetic wave absorbing materials[J]. Ceramics International, 2019, 45(9): 11660-11667. |
11 | Shahedi A M, Ahmadi Z, Sabahi N A, et al. Spark plasma sintering of TiC-SiCw ceramics[J]. Ceramics International, 2019, 45(16): 19808-19821. |
12 | Chen J P, Song G, Liu Z, et al. Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property[J]. Journal of Alloys and Compounds, 2020, 833: 155072. |
13 | Singh D, Zhu D M, Zhou Y C, et al. Design, Development, and Applications of Engineering Ceramics and Composites[M]. John Wiley & Sons, Inc., 2010. |
14 | Narisawa M, Yasuda H, Mori R, et al. Silicon carbide particle formation from carbon black-polymethylsilsesquioxane mixtures with melt pressing[J]. Journal of the Ceramic Society of Japan, 2008, 116(1349): 121-125. |
15 | Cui X L, Wang Y H, Wang L, et al. Synthesis of nanometer-sized TiC and SiC from petroleum coke by reactive milling[J]. Petroleum Science and Technology, 2001, 19(7/8): 971-978. |
16 | Sulardjaka, Jamasri, Wildan M W, et al. Method for increasing β-SiC yield on solid state reaction of coal fly ash and activated carbon powder[J]. Bulletin of Materials Science, 2011, 34(4): 1013-1016. |
17 | Wang L, Hu X B, Xu X G, et al. Synthesis of high purity SiC powder for high-resistivity SiC single crystals growth[J]. Journal of Materials Science & Technology, 2007, 23(1): 120-124. |
18 | Guo X Z, Zhu L, Li W Y, et al. Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source[J]. Journal of Advanced Ceramics, 2013, 2(2): 128-134. |
19 | Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Research, 2017, 5: 17014. |
20 | Shen Z Z, Chen J H, Li B, et al. A novel two-stage synthesis for 3C-SiC nanowires by carbothermic reduction and their photoluminescence properties[J]. Journal of Materials Science, 2019, 54(19): 12450-12462. |
21 | Wei J, Li K Z, Li H J, et al. Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant[J]. Materials Chemistry and Physics, 2006, 95(1): 140-144. |
22 | 阳永荣, 王靖岱, 颜丽红. 废轮胎热解再生炭黑表面活性[J]. 化工学报, 2005, 56(4): 726-732. |
Yang Y R, Wang J D, Yan L H. Surface character of pyrolytic carbon black[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(4): 726-732. | |
23 | Wang J K, Zhang Y Z, Li J Y, et al. Catalytic effect of cobalt on microwave synthesis of β-SiC powder[J]. Powder Technology, 2017, 317: 209-215. |
24 | Lin Y J, Tsang C P. The effects of starting precursors on the carbothermal synthesis of SiC powders[J]. Ceramics International, 2003, 29(1): 69-75. |
25 | Jiang S N, Gao S B, Liu Y, et al. An efficient way of recycling silicon kerf waste for synthesis of high-quality SiC[J]. International Journal of Applied Ceramic Technology, 2020, 17(1): 130-137. |
26 | Guo X Z, Zhang L J, Yan L Q, et al. Preparation of silicon carbide using bamboo charcoal as carbon source[J]. Materials Letters, 2009, 64(3): 331-333. |
27 | An Z B, Xue J, Cao H, et al. A facile synthesis of silicon carbide nanoparticles with high specific surface area by using corn cob[J]. Advanced Powder Technology, 2018, 30(1): 164-169. |
28 | 古卫俊, 贾素秋, 邱敬东, 等. 稻壳制备碳化硅晶须[J]. 硅酸盐学报, 2014, 42(1): 28-32. |
Gu W J, Jia S Q, Qiu J D, et al. Preparation of SiC whiskers from rice husk[J]. Journal of the Chinese Ceramic Society, 2014, 42(1): 28-32. | |
29 | 郝建英, 王英勇, 童希立, 等. 不同碳硅比对合成高比表面积炭化硅的影响[J]. 材料导报, 2012, 26(10): 73-76. |
Hao J Y, Wang Y Y, Tong X L, et al. Effect of n(C)/n(Si) on the synthesis of high surface area SiC[J]. Materials Review, 2012, 26(10): 73-76. | |
30 | 蒙真真, 武志红, 刘新伟, 等. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897. |
Meng Z Z, Wu Z H, Liu X W, et al. Study on absorbing properties of bamboo-like silicon carbide whiskers[J]. CIESC Journal, 2020, 71(4): 1889-1897. | |
31 | Park W S, Joo B J, Choi D J, et al. A study on the thermal stability of silicon carbide whiskers on growth temperature[J]. Journal of Materials Science, 2005, 40(20): 5529-5531. |
32 | Silva P C, Figueiredo J L. Production of SiC and Si3N4 whiskers in C+SiO2 solid mixtures[J]. Materials Chemistry and Physics, 2001, 72(3): 326-331. |
33 | Li X K, Liu L, Zhang Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon, 2001, 39(2): 159-165. |
34 | Niu F X, Wang Y X, Fu S L, et al. Ferrocene-assisted growth of SiC whiskers with hexagonal cross-section from a preceramic polymer[J]. Ceramics International, 2017, 43(15): 12983-12987. |
35 | 杨书廷, 杨伟光, 尹艳红, 等. 微波热处理对La-Ni-Pt纳米合金催化剂性质的影响[J]. 材料热处理学报, 2006, 27(5): 22-25, 131. |
Yang S T, Yang W G, Yin Y H, et al. Influence of microwave heat-treatment on properties of La-Ni-Pt nano-alloy catalysts[J]. Transactions of Materials and Heat Treatment, 2006, 27(5): 22-25, 131. | |
36 | Choi H J, Lee J G. Stacking faults in silicon carbide whiskers[J]. Ceramics International, 2000, 26(1): 7-12. |
[1] | 王瑞恒, 何品晶, 吕凡, 章骅. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723. |
[2] | 鲁统鹏, 潘晓林, 吴鸿飞, 李煜, 于海燕. 有机絮凝剂对铁矿相沉降性能影响及其吸附机理[J]. 化工学报, 2022, 73(9): 4122-4132. |
[3] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[4] | 白浩隆, 付亮亮, 许光文, 白丁荣. 流化床煤燃烧过程不同气氛下的气态氮释放特征[J]. 化工学报, 2022, 73(2): 876-886. |
[5] | 戴军涛, 刘莉, 刘帅, 顾汉洋, 王科. 基于丝网探针的螺旋管内气液两相流气泡行为研究[J]. 化工学报, 2022, 73(10): 4377-4388. |
[6] | 周闻, 鄂承林, 李永祺, 郭玉娇, 李子轩, 卢春喜. 新型多旋臂气液分离器入口旋流头的预分离特性研究[J]. 化工学报, 2021, 72(9): 4775-4785. |
[7] | 郭盛争, 吴送姑, 苏鑫, 高伟, 牛志平, 龚俊波. 莱鲍迪苷A溶解度与介稳区宽度的测定及其结晶过程研究[J]. 化工学报, 2021, 72(8): 3997-4008. |
[8] | 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848. |
[9] | 侯勇俊, 祝敬涛, 李华川, 吴先进, 蒋锐. 均衡运动旋转振动筛DEM数值模拟[J]. 化工学报, 2021, 72(5): 2706-2717. |
[10] | 周剑, 江倩, 杨怡, 冯厦厦, 仲兆祥, 邢卫红. 烧结助剂对低温制备碳化硅多孔陶瓷性能的影响[J]. 化工学报, 2021, 72(4): 2293-2299. |
[11] | 魏娟, 王玉军, 骆广生. 铝源孔容和焙烧升温过程对碳热还原法制备氮化铝粉体的影响[J]. 化工学报, 2021, 72(2): 1156-1168. |
[12] | 丁国栋, 陈家庆, 李振林, 蔡小垒. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析[J]. 化工学报, 2021, 72(11): 5552-5562. |
[13] | 高颂,徐燕燕,李继香,叶爽,黄伟光. 基于TFM-PBM耦合模型的离心泵内微气泡破碎合并的模拟研究[J]. 化工学报, 2021, 72(10): 5082-5093. |
[14] | 侯雅琦, 沈敬尧, 易达, 王哲, 康玲玲, 孟子晖, 薛敏. 异丙基丙烯酰胺水凝胶纳米微球粒径的控制及其对多肽吸附的影响[J]. 化工学报, 2020, 71(S2): 267-272. |
[15] | 蒙真真, 武志红, 刘新伟, 王耀, 郑海康, 王宇斌. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 482
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 763
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||