化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4377-4388.DOI: 10.11949/0438-1157.20220610
收稿日期:
2022-05-05
修回日期:
2022-07-12
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
刘莉
作者简介:
戴军涛(1998—),男,硕士研究生,dai_juntao@126.com
基金资助:
Juntao DAI1(), Li LIU2(), Shuai LIU2, Hanyang GU2, Ke WANG1
Received:
2022-05-05
Revised:
2022-07-12
Online:
2022-10-05
Published:
2022-11-02
Contact:
Li LIU
摘要:
核反应堆蒸汽发生器的传热面由螺旋管束组成。螺旋管的三维螺旋结构使得泡状流和塞状流等气液两相流中的气泡在重力、离心力和浮力等作用下在管道内部呈现不对称的相分布状态,两相滑移速度增大,显著影响换热性能并导致DNB型传热恶化难以预测。实验介质为空气-水,结合自主开发的电导式丝网探针技术并发展先进的数据后处理算法,实现了复杂流场的三维时空重构和离散气泡粒径的精细测量,获得了螺旋管内泡状流和塞状流的截面空泡分布规律。基于研究结果,可根据气泡分布规律对螺旋管道的几何结构进行调整以避免传热恶化,为螺旋管式蒸发器的安全设计提供了基础数据和优化思路。
中图分类号:
戴军涛, 刘莉, 刘帅, 顾汉洋, 王科. 基于丝网探针的螺旋管内气液两相流气泡行为研究[J]. 化工学报, 2022, 73(10): 4377-4388.
Juntao DAI, Li LIU, Shuai LIU, Hanyang GU, Ke WANG. Investigation of bubble behaviors in gas-liquid two-phase flow in helically coiled tube based on wire mesh sensor[J]. CIESC Journal, 2022, 73(10): 4377-4388.
仪表 | 量程 | 不确定度 |
---|---|---|
气体转子流量计 | 10~100 m3/h | ±0.15% |
2.5~25 m3/h | ± 0.35% | |
液体电磁流量计 | 3.6~36 m3/h | ± 0.1% |
0~0.64 m3/h | ± 0.1% | |
高速摄像机 | 0~10000帧/秒 | — |
表1 仪表量程和不确定度
Table 1 Range and uncertainty of test instruments
仪表 | 量程 | 不确定度 |
---|---|---|
气体转子流量计 | 10~100 m3/h | ±0.15% |
2.5~25 m3/h | ± 0.35% | |
液体电磁流量计 | 3.6~36 m3/h | ± 0.1% |
0~0.64 m3/h | ± 0.1% | |
高速摄像机 | 0~10000帧/秒 | — |
1 | 李磊, 张富源, 何戈宁, 等. 核电高效紧凑新型蒸汽发生器设计研究[J]. 核动力工程, 2020, 41(1): 189-193. |
Li L, Zhang F Y, He G N, et al. Design research on efficient and compact steam generator for nuclear power plants[J]. Nuclear Power Engineering, 2020, 41(1): 189-193. | |
2 | 姚彦贵. 核电蒸汽发生器热工水力稳态特性计算分析研究[D]. 上海: 上海交通大学, 2007. |
Yao Y G. Study about thermal hydraulic static characteristics calculation of nuclear steam generator[D]. Shanghai: Shanghai Jiao Tong University, 2007. | |
3 | 赵孝, 张震, 杨星团, 等. 小型模块式反应堆螺旋管蒸汽发生器设计和热工水力分析[J]. 原子能科学技术, 2019, 53(12): 2361-2366. |
Zhao X, Zhang Z, Yang X T, et al. Design and thermal hydraulic analysis of helically coiled tube steam generator in small modular reactor[J]. Atomic Energy Science and Technology, 2019, 53(12): 2361-2366. | |
4 | Ekariansyah A S, Widodo S, Tjahjono H, et al. Validation of helical steam generator design for the experimental power reactor[J]. Journal of Physics: Conference Series, 2021, 1772(1): 012035. |
5 | 李兆谞. 螺旋管内气液两相流流型及转换机理研究[D]. 北京: 清华大学, 2018. |
Li Z X. Research on the gas-liquid flow regimes and transition mechanisms in helically coiled tubes[D]. Beijing: Tsinghua University, 2018. | |
6 | Cui W Z, Li L J, Xin M D, et al. An experimental study of flow pattern and pressure drop for flow boiling inside microfinned helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(1/2): 169-175. |
7 | Zhu H Y, Li Z X, Yang X T, et al. Flow regime identification for upward two-phase flow in helically coiled tubes[J]. Chemical Engineering Journal, 2017, 308: 606-618. |
8 | Huang Y C, Gui N, Yang X T, et al. Local measurement of bubbly flow in helically coiled tubes using double-sensor conductivity probe[J]. Journal of Nuclear Science and Technology, 2020, 57(6): 689-703. |
9 | 曹夏昕, 阎昌琪. 倾斜管内气液两相流流型的实验研究[J]. 核动力工程, 2005, 26(6): 572-575. |
Cao X X, Yan C Q. Experimental study of gas-liquid flow pattern in inclined pipe[J]. Nuclear Power Engineering, 2005, 26(6): 572-575. | |
10 | Zhu G Y, Yang X T, Jiang S Y, et al. Intermittent gas-liquid two-phase flow in helically coiled tubes[J]. International Journal of Multiphase Flow, 2019, 116: 113-124. |
11 | Murai Y, Oiwa H, Sasaki T, et al. Backlight imaging tomography for gas-liquid two-phase flow in a helically coiled tube[J]. Measurement Science and Technology, 2005, 16(7): 1459-1468. |
12 | Fsadni A M, Whitty J P M. A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2016, 95: 551-565. |
13 | 周云龙, 张立彦. 矩形截面螺旋管内气液两相流型转换数值模拟[J]. 化工学报, 2014, 65(12): 4767-4774. |
Zhou Y L, Zhang L Y. Numerical simulation of flow pattern transition for gas-liquid two-phase flow in helical square ducts[J]. CIESC Journal, 2014, 65(12): 4767-4774. | |
14 | Li Z X, Jiang S Y, Yang X T, et al. Bubbly-intermittent flow transition in helically coiled tubes[J]. Chemical Engineering Journal, 2017, 323: 96-104. |
15 | van Eckeveld A C, Gotfredsen E, Westerweel J, et al. Annular two-phase flow in vertical smooth and corrugated pipes[J]. International Journal of Multiphase Flow, 2018, 109: 150-163. |
16 | Xia G D, Cai B, Cheng L X, et al. Experimental study and modelling of average void fraction of gas-liquid two-phase flow in a helically coiled rectangular channel[J]. Experimental Thermal and Fluid Science, 2018, 94: 9-22. |
17 | Zboray R, Prasser H M. Measuring liquid film thickness in annular two-phase flows by cold neutron imaging[J]. Experiments in Fluids, 2013, 54(9): 1-15. |
18 | Fatehi P A, Roshani G H, Feghhi S A H. Volume fraction measurement and flow regime recognition in dynamic gas-liquid two phase flow using gamma ray radiation technique[J]. Instruments and Experimental Techniques, 2017, 60(5): 752-758. |
19 | Wang C, Zhao N, Chen C, et al. A method for direct thickness measurement of wavy liquid film in gas-liquid two-phase annular flow using conductance probes[J]. Flow Measurement and Instrumentation, 2018, 62: 66-75. |
20 | Ghosh S, Pratihar D K, Maiti B, et al. Identification of flow regimes using conductivity probe signals and neural networks for counter-current gas-liquid two-phase flow[J]. Chemical Engineering Science, 2012, 84: 417-436. |
21 | Perez V H, Azzopardi B J, Kaji R, et al. Wisp-like structures in vertical gas-liquid pipe flow revealed by wire mesh sensor studies[J]. International Journal of Multiphase Flow, 2010, 36(11/12): 908-915. |
22 | Nuryadin S, Ignaczak M, Lucas D, et al. On the accuracy of wire-mesh sensors in dependence of bubble sizes and liquid flow rates[J]. Experimental Thermal and Fluid Science, 2015, 65: 73-81. |
23 | Velasco P H F, Rodriguez O M H. Applications of wire-mesh sensors in multiphase flows[J]. Flow Measurement and Instrumentation, 2015, 45: 255-273. |
24 | Azzopardi B J, Abdulkareem L A, Zhao D, et al. Comparison between electrical capacitance tomography and wire mesh sensor output for air/silicone oil flow in a vertical pipe[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8805-8811. |
25 | Prasser H M, Böttger A, Zschau J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. |
26 | Prasser H M, Häfeli R. Signal response of wire-mesh sensors to an idealized bubbly flow[J]. Nuclear Engineering and Design, 2018, 336: 3-14. |
27 | Silva M. Impedance sensors for fast multiphase flow measurement and imaging[D]. Dresden: Technische Universität Dresden, 2008. |
28 | Prasser H M, Scholz D, Zippe C. Bubble size measurement using wire-mesh sensors[J]. Flow Measurement and Instrumentation, 2001, 12(4): 299-312. |
29 | Prasser H M, Krepper E, Lucas D. Evolution of the two-phase flow in a vertical tube—decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors[J]. International Journal of Thermal Sciences, 2002, 41(1): 17-28. |
30 | dos Santos E N, de Paiva Rodrigues R L, Pipa D R, et al. Three-dimensional bubble shape estimation in two-phase gas-liquid slug flow[J]. IEEE Sensors Journal, 2018, 18(3): 1122-1130. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[7] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[8] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[9] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[12] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[13] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[14] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[15] | 王瑞恒, 何品晶, 吕凡, 章骅. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 279
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||