化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 267-272.doi: 10.11949/0438-1157.20200517

• 材料化学工程与纳米技术 • 上一篇    下一篇

异丙基丙烯酰胺水凝胶纳米微球粒径的控制及其对多肽吸附的影响

侯雅琦(),沈敬尧,易达,王哲,康玲玲,孟子晖,薛敏()   

  1. 北京理工大学化学与化工学院,北京 102488
  • 收稿日期:2020-05-08 修回日期:2020-07-14 出版日期:2020-11-06 发布日期:2020-11-06
  • 通讯作者: 薛敏 E-mail:yaqihou7@163.com;minxue@bit.edu.cn
  • 作者简介:侯雅琦(1995—),女,硕士研究生,yaqihou7@163.com
  • 基金资助:
    国家自然科学基金项目(21874009)

Influences on diameter of isopropylacrylamide hydrogel nanoparticles and its effect on peptide affinity

Yaqi HOU(),Jingyao SHEN,Da YI,Zhe WANG,Lingling KANG,Zihui MENG,Min XUE()   

  1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
  • Received:2020-05-08 Revised:2020-07-14 Published:2020-11-06 Online:2020-11-06
  • Contact: Min XUE E-mail:yaqihou7@163.com;minxue@bit.edu.cn

摘要:

采用沉淀聚合法制备了一系列聚(N-异丙基丙烯酰胺-co-N-叔丁基丙烯酰胺-co-丙烯酸)(P-NIPAm-tBAm-AAc)水凝胶纳米微球(NPs),分散性好且粒径可控。通过调整配方,其水动力学直径可控制在71~304 nm之间,经动态光散射(DLS)表征,PDI值均小于0.1。由于电荷斥力的作用,亲电单体丙烯酸(AAc)的用量从5%增加到50%(摩尔分数),粒径从71 nm增大至219 nm;而疏水单体叔丁基丙烯酰胺(tBAm)的使用,使微球的粒径趋于变小;表面活性剂十二烷基磺酸钠(SDS)的量增大,NPs的粒径逐渐减小,最小可达71 nm。将所制备的NPs用于多肽(LEVLFQGP)的吸附,结果表明,吸附率随NPs粒径的减小而增大,并且与聚合物的配方有关,当AAc的摩尔分数为20%、粒径为128 nm时,吸附率为90%。经DLS表征,NPs的体积相变温度(LCST)为(20±2)℃,因此分别在35℃和5℃下对多肽进行吸附/解吸,5次循环实验后,吸附率降低小于7%。本研究探索了水凝胶纳米微球粒径的影响因素及粒径对目标多肽亲和性的影响,可作为制备尺寸均一、粒径可控水凝胶纳米微球的参考。

关键词: 异丙基丙烯酰胺, 水凝胶纳米微球, 水动力学直径, 吸附, 纳米粒子, 粒度分布

Abstract:

A library of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid) (P-NIPAm-tBAm-AAc) hydrogel nanoparticles with good dispersion and uniform size were prepared by precipitation polymerization method. Their hydrodynamic diameters were controlled from 71 nm to 304 nm proved by dynamic light scattering (DLS) with adjusting the polymerization formulation, while the PDI values are all below 0.1. Due to the charge repulsion, the particle size increased from 71 nm to 219 nm when the feeding of electrophilic monomer AAc increased from 5% to 50%(mol) in polymerization. Meanwhile, the inverse effect was also revealed on the hydrophobic monomer tBAm, that is, the nanoparticle size decreased along with increasing its feeding ratio. Besides, the increased usage of the surfactant SDS resulted in the microspheres being smaller to 71 nm. It is proved that the NPs size greatly affected their affinity to the target peptides (LEVLFQGP), and the results showed that the adsorption rate increased with decreasing the nanoparticle size. When the molar ratio of AAc was 20% and the diameter was 128 nm, the adsorption rate could reach 90%. Furthermore, the adsorption and desorption experiment was performed with changing the environmental temperature from 35℃ to 5℃ since the volume phase transition temperature (LCST) of NPs is (20±2)℃ proved by DLS. After five times adsorption/desorption circulation experiments, the reduction of NPs adsorption rate on target peptide was below 7%. Therefore, the prepared and screened NPs are size controlled and reusable.

Key words: N-isopropylacrylamide, hydrogel nanoparticles, hydrodynamic diameter, adsorption, nanoparticles, particle size distribution

中图分类号: 

  • O 648.17

图1

NPs对多肽的吸附解吸循环示意图"

表1

不同AAc比例的水凝胶纳米微球的zeta电位和粒径数据"

样品

AAc用量/

%(mol)

水动力学

直径/nm

PDI值zeta电位值
1571.150.012-25.5
210103.810.033-27.4
315111.950.051-28.8
420128.240.027-31
525157.670.056-32.5
630159.170.015-34.1
735161.920.046-36.2
840165.330.071-37.3
950219.310.064-38.6

图2

水凝胶纳米微球的水动力学直径与tBAm用量之间的关系"

图3

水凝胶纳米微球的结构示意图"

图4

水凝胶纳米微球的水动力学直径与SDS用量的关系"

图5

水凝胶纳米微球的水动力学直径与其对多肽吸附率的关系"

图6

水凝胶的温度敏感性"

图7

水凝胶纳米微球的重复利用性"

1 Cinay G E, Erkoc P, Alipour M, et al. Nanogel-integrated pH-responsive composite hydrogels for controlled drug delivery[J]. ACS Biomaterials Science & Engineering, 2017, 3(3): 370-380.
2 胡元辰, 张新生, 崔爽, 等. 利用温度敏感型水凝胶进行仿生发汗冷却[J]. 化工学报, 2012, 63(7): 2025-2032.
Hu Y C, Zhang X S, Cui S, et al. Bio-mimic transpiration cooling using temperature-sensitive hydrogel[J]. CIESC Journal, 2012, 63(7): 2025-2032.
3 孙晓锋, 李驰, 夏修阳, 等. 半纤维素-TiO2复合凝胶的光催化降解性能[J]. 化工学报, 2016, 67(5): 2070-2077.
Sun X F, Li C, Xia X Y, et al. Photocatalytic degradation property of hemicellulose/TiO2 composite gel [J]. CIESC Journal, 2016, 67(5): 2070-2077.
4 张宁, 单国荣. 近红外光响应氧化石墨烯/微凝胶复合智能水凝胶[J]. 化工学报, 2018, 69(11): 4862-4868.
Zhang N, Shan G R. Near-infrared light and temperature responsive nanocomposite hydrogel[J].CIESC Journal, 2018, 69(11): 4862-4868.
5 Hajebi S, Abdollahi A, Roghani-Mamaqani H, et al. Temperature-responsive poly(N-isopropylacrylamide) nanogels: the role of hollow cavities and different shell cross-linking densities on doxorubicin loading and release[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(10): 2683-2694.
6 Maiti D, Chao Y, Dong Z L, et al. Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer[J]. Nanoscale, 2018, 10(29): 13976-13985.
7 Kinoshita N, Sasaki Y, Marukawa E, et al. Crosslinked nanogel-based porous hydrogel as a functional scaffold for tongue muscle regeneration[J]. Journal of Biomaterials Science, Polymer Edition, 2020, 31(3): 1-19.
8 Wu Y Z, Li H F, Rao Z Q, et al. Controlled protein adsorption and delivery of thermosensitive poly(N-isopropylacrylamide) nanogels[J]. Journal of Materials Chemistry B, 2017, 5(39): 7974-7984.
9 Raghupathi K, Eron S J, Anson F, et al. Utilizing inverse emulsion polymerization to generate responsive nanogels for cytosolic protein delivery[J]. Molecular Pharmaceutics, 2017, 14(12): 4515-4524.
10 Pelton R, Chibante H P. Preparation of aqueous lattices with N-isopropylacrylamide[J]. Colloids and Surfaces, 1986, 20(3): 247-256.
11 Li J, Zheng C, Cansiz S, et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy[J]. Journal of the American Chemical Society, 2015, 137(4): 1412-1415.
12 Chou F Y, Lai J Y, Shih C M, et al. In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly(N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: effect of particle size and chemical composition[J]. Colloids and Surfaces B-Biointerfaces, 2013, 104: 66-74.
13 Yoshimatsu K, Koide H, Hoshino Y, et al. Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin[J]. Nature Protocols, 2015, 10(4): 595-604.
14 Koide H, Yoshimatsu K, Hoshino Y, et al. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor(VEGF165)[J]. Nature Chemistry, 2017, 9: 715-722.
15 O􀆳Brien J, Lee S H, Gutierrez J M,et al. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis[J]. Plos Neglected Tropical Diseases,2018, 12(10): e0006736.
16 王哲, 薛敏, 孟子晖, 等. 水凝胶纳米颗粒对溶菌酶的亲和研究[J]. 分析化学, 2018, 46(3): 317-323.
Wang Z, Xue M, Meng Z H, et al. Affinity of nanoparticles to lysozyme[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3): 317-323.
17 张禾蓉, 易达, 孟子晖, 等. 基于纳米水凝胶颗粒的毛细管电泳法分离DNA[J]. 分析化学, 2019, 47(5): 772-778.
Zhang H R, Yi D, Meng Z H, et al. Separation of DNA by capillary electrophoresis based on nanoparticles hydrogel[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 772-778.
18 Chen H, Venkat S, Hudson D, et al. Site-specifically studying lysine acetylation of aminoacyl-tRNA synthetases[J]. ACS Chemical Biology, 2019, 14(2): 288-295.
19 Downey J S, Frank R S, Li W, et al. Growth mechanism of poly(divinylbenzene) micropheres in precipitation polymerization[J]. Macromolecules, 1999, 32(9): 2838-2844.
20 Xu M J, Li M Y, Bo P, et al. Effects of strength of interfacial film and zeta potential on oil-in-water emulsion stability[J]. Chinese Journal of Applied Chemistry, 2007, 24(6): 623-627.
[1] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[2] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[3] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[4] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[5] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[6] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[7] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[8] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[9] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[10] 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146.
[11] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[12] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[13] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[14] 白浩隆, 付亮亮, 许光文, 白丁荣. 流化床煤燃烧过程不同气氛下的气态氮释放特征[J]. 化工学报, 2022, 73(2): 876-886.
[15] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!