化工学报 ›› 2021, Vol. 72 ›› Issue (2): 863-875.DOI: 10.11949/0438-1157.20201246
收稿日期:
2020-09-01
修回日期:
2020-11-17
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
杜淼,单国荣
作者简介:
王丽明(1997—),女,博士研究生,基金资助:
WANG Liming1(),DU Miao2(),SHAN Guorong1(),LU Qing3,SONG Yihu2
Received:
2020-09-01
Revised:
2020-11-17
Online:
2021-02-05
Published:
2021-02-05
Contact:
DU Miao,SHAN Guorong
摘要:
动态生热是橡胶黏弹性的直接体现,是外加机械能向热能的转化。动态生热产生的热量积累直接影响材料的使用性能,生热导致的温度上升会降低橡胶复合材料的力学强度、静态和动态模量以及耐磨性等。为此,开展了橡胶复合材料动态生热机理及低生热调控方面的研究。本文从橡胶基体网络结构、强化粒子分散、加工工艺和理论模拟等角度出发,对橡胶低生热研究进行了归纳、总结及展望。
中图分类号:
王丽明, 杜淼, 单国荣, 卢青, 宋义虎. 低生热橡胶复合体系的研究进展[J]. 化工学报, 2021, 72(2): 863-875.
WANG Liming, DU Miao, SHAN Guorong, LU Qing, SONG Yihu. Research progress of rubber composite with low dynamic heat generation[J]. CIESC Journal, 2021, 72(2): 863-875.
1 | Akutagawa K, Hamatani S, Nashi T. The new interpretation for the heat build-up phenomena of rubbery materials during deformation[J]. Polymer, 2015, 66: 201-209. |
2 | Liu Y Y, Tian Z H, Xie Z M, et al. Dynamic viscoelasticity of polyester/rubber composites under cyclic loading[J]. Journal of Materials Science & Technology, 2005, 21(3): 367-370. |
3 | 杨波. 低生热天然橡胶复合材料的性能研究[D]. 太原: 中北大学, 2020. |
Yang B. Preparation and performance research of low heat build-up natural rubber composites[D]. Taiyuan: North University of China, 2020. | |
4 | 张立群. 橡胶纳米复合材料基础与应用[M]. 北京: 化学工业出版社, 2018. |
Zhang L Q. Rubber Nanocomposites: Basics and Applications[M]. Beijing: Chemical Industry Press, 2018. | |
5 | Medalia A I. Heat generation in elastomer compounds: causes and effects[J]. Rubber Chemistry and Technology, 1991, 64(3): 481-492. |
6 | 初红艳, 许康健, 孙冬明, 等. 挤压旋转的橡胶辊滞后生热温度场分析[J]. 中国机械工程, 2019, 30(18): 2217-2223. |
Chu H Y, Xu K J, Sun D M, et al. Temperature field analysis of hysteresis heat of squeezing and rotating rubber rollers[J]. China Mechanical Engineering, 2019, 30(18): 2217-2223. | |
7 | Fang Q H, Zhou S L, Wang N, et al. The research on relationship between heat generation and crosslinking density of vulcanized rubber[J]. Materials Science Forum, 2011, 704/705: 541-545. |
8 | 郭飞, 张兆想, 宋炜, 等. 橡胶硫化过程数值模拟研究进展[J]. 化工学报, 2020, 71(8): 3393-3402. |
Guo F, Zhang Z X, Song W, et al. Research progress in numerical simulation of rubber vulcanization[J]. CIESC Journal, 2020, 71(8): 3393-3402. | |
9 | Luo W B, Hu X L, Wang C H, et al. Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber[J]. International Journal of Mechanical Sciences, 2010, 52(2): 168-174. |
10 | Luo W B, Yin B Y, Hu X L, et al. Modeling of the heat build-up of carbon black filled rubber[J]. Polymer Testing, 2018, 69: 116-124. |
11 | Zhi J Y, Wang S P, Zhang M J, et al. Numerical analysis of the dependence of rubber hysteresis loss and heat generation on temperature and frequency[J]. Mechanics of Time-Dependent Materials, 2019, 23(4): 427-442. |
12 | 周雄, 胡小玲, 肖世武, 等. 硫化橡胶动态力学性能的分数阶微分Kelvin模型[J]. 高分子材料科学与工程, 2012, 28(4): 187-190. |
Zhou X, Hu X L, Xiao S W, et al. Application of fractional differential kelvin model to dynamic mechanical properties of carbon black filled vulcanized rubber[J]. Polymer Materials Science & Engineering, 2012, 28(4): 187-190. | |
13 | 王军, 孙大刚, 刘世忠, 等. 考虑热力耦合的橡胶减振器阻尼特性[J]. 振动.测试与诊断, 2018, 38(4): 859-865, 880. |
Wang J, Sun D G, Liu S Z, et al. Damping properties of rubber isolator considering thermomechanical coupling[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(4): 859-865, 880. | |
14 | Tomita Y, Nakata S, Naito M, et al. Evaluation of deformation behavior of silica-filled rubber under monotonic and cyclic straining[J]. Key Engineering Materials, 2013, 535/536: 185-188. |
15 | 陈勇, 单国荣. 丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵反相乳液聚合动力学[J]. 化工学报, 2018, 69(2): 563-569. |
Chen Y, Shan G R. Kinetics of acrylamide and 2-methylacryloylxyethyltrimethyl ammonium chloride in inverse emulsion polymerization[J]. CIESC Journal, 2018, 69(2): 563-569. | |
16 | Li W B, Zhang X J, Shang Y Y, et al. Investigation of dynamic heat generation and transfer behavior and energy dissipation for nonlinear synchronous belt transmission[J]. Applied Thermal Engineering, 2018, 144: 457-468. |
17 | Banic M, Stamenkovic D, Miltenovic V, et al. Prediction of heat generation in rubber or rubber-metal springs[J]. Thermal Science, 2012, 16(suppl. 2): 527-539. |
18 | Yoo S, Uddin M S, Heo H, et al. Thermoviscoelastic modeling of a nonpneumatic tire with a lattice spoke[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(2): 241-252. |
19 | Li Y, Liu W Y, Frimpong S. Effect of ambient temperature on stress, deformation and temperature of dump truck tire[J]. Engineering Failure Analysis, 2012, 23: 55-62. |
20 | Tang T, Johnson D, Smith R E, et al. Numerical evaluation of the temperature field of steady-state rolling tires[J]. Applied Mathematical Modelling, 2014, 38(5/6): 1622-1637. |
21 | 余真珠, 马连湘. 基于径向基网络的炭黑填充胶生热率模型重构[J]. 工程热物理学报, 2010, 31(9): 1563-1566. |
Yu Z Z, Ma L X. Model reconstruction of heat generation ratio of carbon black-filled rubber based on RBF NN[J]. Journal of Engineering Thermophysics, 2010, 31(9): 1563-1566. | |
22 | 郑强, 税波, 沈烈. 炭黑填充多组分高分子导电复合材料的研究进展[J]. 高分子材料科学与工程, 2006, 22(4): 15-18. |
Zheng Q, Shui B, Shen L. Recent progress in studies on the conductive composites composed of multi-component polymers filled with carbon black[J]. Polymer Materials Science & Engineering, 2006, 22(4): 15-18. | |
23 | Liu X, Zhao S H, Zhang X Y, et al. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites[J]. Polymer, 2014, 55(8): 1964-1976. |
24 | Qin X, Wang J D, Han B Y, et al. Novel design of eco-friendly super elastomer materials with optimized hard segments micro-structure: toward next-generation high-performance tires[J]. Frontiers in Chemistry, 2018, 6: 240. |
25 | Zhang C F, Tang Z H, Guo B C, et al. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica[J]. Composites Science and Technology, 2018, 156: 70-77. |
26 | Quiteria V R S, Sierra C A, Gómez-Fatou J M, et al. Tin-coupled styrene-butadiene rubbers (SBRs). Relationship between coupling type and properties[J]. Die Angewandte Makromolekulare Chemie, 1997, 246(1): 85-96. |
27 | 赵素合, 张建明, 张兴英, 等. 星形SSBR的偶联程度与性能的关系[J]. 合成橡胶工业, 2002, 25(4): 223-226. |
Zhao S H, Zhang J M, Zhang X Y, et al. Relations between coupling degree of star SSBR and its properties[J]. China Synthetic Rubber Industry, 2002, 25(4): 223-226. | |
28 | 焦书科. 橡胶化学与物理导论[M]. 北京: 化学工业出版社, 2009. |
Jiao S K. Introduction to Rubber Chemistry and Physics [M]. Beijing: Chemical Industry Press, 2009. | |
29 | 吴丹. 橡胶技术中氧化锌(ZnO)的重要性[J]. 橡胶参考资料, 2020, 50(1): 49-54. |
Wu D. The importance of zinc oxide in rubber technology[J]. Rubber References, 2020, 50(1): 49-54. | |
30 | González N, Custal M D À, Rodríguez D, et al. Influence of ZnO and TiO2 particle sizes in the mechanical and dielectric properties of vulcanized rubber[J]. Materials Research, 2017, 20(4): 1082-1091. |
31 | Thomas S P, Mathew E J, Marykutty C V. Synthesis and effect of surface modified nano ZnO in natural rubber vulcanization[J]. Journal of Applied Polymer Science, 2012, 124(4): 3099-3107. |
32 | Wang R, Xie C Z, Zeng L L, et al. Thermal decomposition behavior and kinetics of nanocomposites at low-modified ZnO content[J]. RSC Advances, 2019, 9(2): 790-800. |
33 | 刘路, 黄若晨, 熊传溪. 改性纳米氧化锌/硅橡胶导热复合材料的性能[J]. 胶体与聚合物, 2016, 34(1): 3-6. |
Liu L, Huang R C, Xiong C X. Properties of modified nano-ZnO/silicon rubber thermal conductivity composites[J]. Chinese Journal of Colloid & Polymer, 2016, 34(1): 3-6. | |
34 | 王振华, 卢咏来, 张立群. 纳米氧化锌/EPDM复合材料的性能研究[J]. 橡胶工业, 2009, 56(10): 581-587. |
Wang Z H, Lu Y L, Zhang L Q. Properties of nano-zinc oxide/EPDM composite[J]. China Rubber Industry, 2009, 56(10): 581-587. | |
35 | 曹智, 苏小莉, 李庆华, 等. 纳米氧化锌的气流粉碎改性及应用研究[J]. 功能材料, 2010, 41(3): 537-540. |
Cao Z, Su X L, Li Q H, et al. Jet grinding and surface modification of ZnO nanoparticles and its application[J]. Journal of Functional Materials, 2010, 41(3): 537-540. | |
36 | Heideman G, Noordermeer J W M, Datta R N, et al. Effect of zinc complexes as activator for sulfur vulcanization in various rubbers[J]. Rubber Chemistry and Technology, 2005, 78(2): 245-257. |
37 | Wu C F. Coordination crosslinking of nitrile rubber filled with copper sulfate particles[J]. Chinese Journal of Polymer Science, 2007, 25(5): 447-459. |
38 | 应宗荣. 高分子材料成形工艺学[M]. 北京: 高等教育出版社, 2010. |
Ying Z R. Polymer Material Forming Technology[M]. Beijing: Higher Education Press, 2010. | |
39 | 柳召刚, 邢志超, 郝伟, 等. 促进剂M-La的合成及对天然橡胶的硫化促进作用[J]. 合成橡胶工业, 2020, 43(1): 66-70. |
Liu Z G, Xing Z C, Hao W, et al. Synthesis of accelerator M-La and its effect on vulcanization of natural rubber[J]. China Synthetic Rubber Industry, 2020, 43(1): 66-70. | |
40 | 陈方涛, 姜磊, 陈锦春. 醛胺类橡胶硫化促进剂808和DHP的合成研究[J]. 应用化工, 2013, 42(4): 765-767. |
Chen F T, Jiang L, Chen J C. Study on synthesis of aldehyde-amines type thiofide 808 and DHP[J]. Applied Chemical Industry, 2013, 42(4): 765-767. | |
41 | 王凡, 李杰, 丁宁, 等. 多种促进剂并用硫黄硫化三元乙丙橡胶机理研究[J]. 橡胶工业, 2018, 65(7): 747-751. |
Wang F, Li J, Ding N, et al. Mechanism research of blended accelerators in sulfur curing systems of EPDM[J]. China Rubber Industry, 2018, 65(7): 747-751. | |
42 | 韦伟梅, 谭海生, 刘磊, 等. 促进剂ZDTP及其与促进剂ZMBT并用对天然胶乳性能的影响[J]. 橡胶工业, 2017, 64(11): 665-669. |
Wei W M, Tan H S, Liu L, et al. Effects of accelerators ZDTP and ZDTP/ZMBT blend on properties of NR latex[J]. China Rubber Industry, 2017, 64(11): 665-669. | |
43 | 张胡松, 彭华龙. 次磺酰胺类硫化促进剂的研究及应用进展[J]. 广州化工, 2010, 38(5): 80-81. |
Zhang H S, Peng H L. Research progress and application of sulfenamide vulcanization accelerater [J]. Guangzhou Chemical Industry, 2010, 38(5): 80-81. | |
44 | 温煜明, 董栋. 一种新型安全氯丁橡胶硫化促进剂SRM102[J]. 橡胶参考资料, 2016, 46(2): 25-29. |
Wen Y M, Dong D. A new safety chloroprene rubber vulcanization accelerator SRM102 is presented[J]. Rubber References, 2016, 46(2): 25-29. | |
45 | Kurian T, George K E, Francis D J. Effect of vulcanization temperature on the cure characteristics and vulcanizate properties of natural rubber and styrene-butadiene rubber[J]. Die Angewandte Makromolekulare Chemie, 1988, 162(1): 123-134. |
46 | 李鑫, 徐桂勇, 赵菲, 等. 硫化温度对天然橡胶硫化胶网络结构及性能的影响[J]. 合成橡胶工业, 2014, 37(4): 308-311. |
Li X, Xu G Y, Zhao F, et al. Influence of curing temperature on network structures and properties of natural rubber vulcanizates[J]. China Synthetic Rubber Industry, 2014, 37(4): 308-311. | |
47 | Mihara S, Datta R N, Noordermeer J W M. Flocculation in silica reinforced rubber compounds[J]. Rubber Chemistry and Technology, 2009, 82(5): 524-540. |
48 | Kruželák J, Sýkora R, Hudec I. Peroxide vulcanization of natural rubber(Ⅰ): Effect of temperature and peroxide concentration[J]. Journal of Polymer Engineering, 2014, 34(7): 617-624. |
49 | 丛明辉, 吕丹丹, 林科, 等. 硫化温度及硫化程度对全钢载重子午线轮胎胎面胶性能的影响[J]. 轮胎工业, 2020, 40(10): 618-621. |
Cong M H, Lyu D D, Lin K, et al. Effects of curing temperature and degree on properties of tread compound of TBR tire[J]. Tire Industry, 2020, 40(10): 618-621. | |
50 | Zhang X P, Cai L, Wang C W, et al. Effect of room-temperature annealing on structures and properties of SSBR/BR blends and SSBR/BR/SiO2 composites[J]. Composites Science and Technology, 2019, 184: 107835. |
51 | Surya I, Ismail H, Azura A R. The comparison of alkanolamide and silane coupling agent on the properties of silica-filled natural rubber (SMR-L) compounds[J]. Polymer Testing, 2014, 40: 24-32. |
52 | Anas K, David S, Babu R R, et al. Energy dissipation characteristics of crosslinks in natural rubber: an assessment using low and high-frequency analyzer[J]. Journal of Polymer Engineering, 2018, 38(8): 723-729. |
53 | Zhang J W, Lu J M, Su K, et al. Bio-based β-myrcene-modified solution-polymerized styrene-butadiene rubber for improving carbon black dispersion and wet skid resistance[J]. Journal of Applied Polymer Science, 2019, 136(45): 48159. |
54 | Han J J, Zhang X L, Guo W H, et al. Effect of modified carbon black on the filler-elastomer interaction and dynamic mechanical properties of SBR vulcanizates[J]. Journal of Applied Polymer Science, 2006, 100(5): 3707-3712. |
55 | 杜金艳. CdTe纳米结构零维/一维间的快速转化及荧光偏振传感研究[D]. 芜湖: 安徽师范大学, 2014. |
Du J Y. Investigation toward 0D/1D fast transformation of CdTe nanostructures and fluorescence polarization sensing[D]. Wuhu: Anhui Normal University, 2014. | |
56 | 李芬. 碳纳米管橡胶纳米复合材料制备与性能[D]. 北京: 北京化工大学, 2012. |
Li F. The preparation and property of carbon nanotubes/elastomeric composites[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
57 | Dong B, Liu C, Lu Y L, et al. Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites[J]. Journal of Applied Polymer Science, 2015, 132(25): 42075. |
58 | 刘福瑞, 李建, 孙翀, 等. 停放时间对白炭黑/碳纳米管填充并用胶挤出流变性能的影响[J]. 青岛科技大学学报(自然科学版), 2018, 39(6): 77-81. |
Liu F R, Li J, Sun C, et al. Effect of storage time on extrusion rheological properties of silica/CNT filled compounds[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2018, 39(6): 77-81. | |
59 | 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391. |
Bai J J, Su H B, Liu Z W. Preparation and rheological properties of isocyanate functionalized carbon nanotubes/thermoplastic polyurethane elastomer composites[J]. Materials Review, 2018, 32(24): 4386-4391. | |
60 | Lu Y L, Li J C, Yu H T, et al. Plasma induced surface coating on carbon nanotube bundles to fabricate natural rubber nanocomposites[J]. Polymer Testing, 2018, 65: 21-28. |
61 | 罗芳. 纳米填料对交替多层硅橡胶结构及性能的影响[D]. 成都: 成都理工大学, 2019. |
Luo F. The influence of nano-fillers on the structure and properties of alternating multilayered silicone rubber[D]. Chengdu: Chengdu University of Technology, 2019. | |
62 | 陈利水, 夏季, 陈国梁, 等. 石墨烯/氧化锌复合填充剂对天然胶乳及其制品性能的影响[J]. 合成橡胶工业, 2018, 41(4): 304-308. |
Chen L S, Xia J, Chen G L, et al. Effect of graphene/zinc oxide complex filler on properties of natural rubber latex and its products[J]. China Synthetic Rubber Industry, 2018, 41(4): 304-308. | |
63 | Zhong B C, Dong H H, Luo Y F, et al. Simultaneous reduction and functionalization of graphene oxide via antioxidant for highly aging resistant and thermal conductive elastomer composites[J]. Composites Science and Technology, 2017, 151: 156-163. |
64 | Zheng Z, Shen J, Liu J, et al. Turing the viscoelasticity of elastomeric polymer materials via flexible nanoparticles: insights from molecular dynamics simulation[J]. RSC Advances, 2016, 6(34): 28666-28678. |
65 | Liu J, Lu Y L, Tian M, et al. The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: simulation and experiment[J]. Advanced Functional Materials, 2013, 23(9): 1156-1163. |
66 | 时金凤, 李建, 孙翀, 等. 乳聚丁苯橡胶/白炭黑/偶联剂体系挤出流变特性的研究[J]. 橡胶工业, 2018, 65(7): 731-736. |
Shi J F, Li J, Sun C, et al. Investigation on rheological properties of SBR/silica/silane compound during extrusion[J]. China Rubber Industry, 2018, 65(7): 731-736. | |
67 | 邵亚诗. 原位改性纳米级白炭黑填充NR性能及其低滚阻机理分析[D]. 青岛: 青岛科技大学, 2019. |
Shao Y S. Analysis properties and low rolling resistance mechanism of NR filled by in situ modified nano-scale silica[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
68 | 任卫国. 超(亚)临界水热活化煤矸石制备白炭黑及其表面改性的研究[D]. 太原: 太原理工大学, 2019. |
Ren W G. Study on the preparation of silicon from coal gangue activated by supercritical (subcritical) hydrothermal and its surface modification[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
69 | Rauline R. Copolymer rubber composition with silica filler, tires having a base of said composition and method of preparing same: US5227425[P]. 1993-07-13. |
70 | Li Y, Han B Y, Wen S P, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 62: 52-59. |
71 | Zheng J C, Han D L, Zhao S H, et al. Constructing a multiple covalent interface and isolating a dispersed structure in silica/rubber nanocomposites with excellent dynamic performance[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19922-19931. |
72 | 姚彬彬, 阚泽. 天然虾青素改性白炭黑/天然橡胶复合材料的制备与性能[J]. 化工进展, 2019, 38(4): 1872-1878. |
Yao B B, Kan Z. Preparation and properties of natural astaxanthin modified silica/natural rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1872-1878. | |
73 | Fang Q H, Song B, Tee T T, et al. Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate[J]. Composites Part B: Engineering, 2014, 60: 561-567. |
74 | D'Arienzo M, Redaelli M, Callone E, et al. Hybrid SiO2@POSS nanofiller: a promising reinforcing system for rubber nanocomposites[J]. Materials Chemistry Frontiers, 2017, 1(7): 1441-1452. |
75 | Setua D K, Shukla M K, Nigam V, et al. Lignin reinforced rubber composites[J]. Polymer Composites, 2000, 21(6): 988-995. |
76 | 沈佩瑶, 梁小容, 李彩新, 等. 碱法制备蔗渣纳米纤维素/丁苯橡胶复合材料性能[J]. 化工学报, 2018, 69(6): 2759-2766. |
Shen P Y, Liang X R, Li C X, et al. Properties of bagasse nano-cellulose by alkaline hydrolysis/styrene butadiene rubber composite[J]. CIESC Journal, 2018, 69(6): 2759-2766. | |
77 | 迟书恒. 碳化硼改性氟橡胶复合材料制备及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. |
Chi S H. Study on the preparation and properties of boron carbide modified fluoroelastomer composite material[D]. Harbin: Harbin Engineering University, 2013. | |
78 | Weng G S, Huang G S, Qu L L, et al. Natural rubber with low heat generation achieved by the inclusion of boron carbide[J]. Journal of Applied Polymer Science, 2010, 118(4): 2050-2055. |
79 | Fang Q H, Liu X C, Wang N, et al. The effect of zeolite particle modified by PEG on rubber composite properties[J]. Science and Engineering of Composite Materials, 2015, 22(6): 607-612. |
80 | Tang Z H, Zhang C F, Wei Q Y, et al. Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets[J]. Composites Science and Technology, 2016, 132: 93-100. |
81 | Kim K J, VanderKooi J. Effects of zinc ion containing surfactant on bifunctional silane treated silica compounds in natural rubber[J]. Journal of Industrial and Engineering Chemistry, 2002, 8(4): 334-347. |
82 | 王哲鹏. 离子液体对白炭黑填充天然橡胶性能的影响[D]. 青岛: 青岛科技大学, 2019. |
Wang Z P. Effect of ionic liquid on properties of natural rubber filled with silica[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
83 | Kundu P P. Improvement of filler-rubber interaction by the coupling action of vegetable oil in carbon black reinforced rubber[J]. Journal of Applied Polymer Science, 2000, 75(6): 735-739. |
84 | Xing W, Tang M Z, Wu J R, et al. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method[J]. Composites Science and Technology, 2014, 99: 67-74. |
85 | Wang M J. New developments in carbon black dispersion[J]. Kgk-kautschuk Gummi Kunststoffe, 2005, 58(12): 626-637. |
86 | 张奇峰. 液相混炼溶聚丁苯/白炭黑母胶小试技术研究[D]. 北京: 北京化工大学, 2017. |
Zhang Q F. The design, preparation and lab scale application study of S-SBR/silica master batch by solution compounding[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
87 | 徐云慧, 孙飞, 孙鹏, 等. 混炼工艺对NR/SBR/BR/TRR农业轮胎胎面胶性能的影响[J]. 橡胶科技, 2017, 15(2): 43-47. |
Xu Y H, Sun F, Sun P, et al. Effect of mixing process on properties of NR/SBR/BR/TRR agriculture tire tread[J]. Rubber Science and Technology, 2017, 15(2): 43-47. | |
88 | Lightsey J W, Kneiling D J, Long J M. Silica wet masterbatch: a new process for pre-dispersion of silica in emulsion polymers[J]. Rubber World, 1998, 218(3): 35-40. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||