化工学报 ›› 2021, Vol. 72 ›› Issue (2): 876-885.DOI: 10.11949/0438-1157.20200659
张天永1,3(),杨坤龙1,崔现宝2(),李彬1,宋禹昕1,姜爽1()
收稿日期:
2020-05-27
修回日期:
2020-07-24
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
崔现宝,姜爽
作者简介:
张天永(1966—),男,教授,博士生导师,基金资助:
ZHANG Tianyong1,3(),YANG Kunlong1,CUI Xianbao2(),LI Bin1,SONG Yuxin1,JIANG Shuang1()
Received:
2020-05-27
Revised:
2020-07-24
Online:
2021-02-05
Published:
2021-02-05
Contact:
CUI Xianbao,JIANG Shuang
摘要:
橡胶硫化促进剂按照化学结构可以分为醛胺类、秋兰姆类、硫脲类、二硫代氨基甲酸盐类、噻唑类、胍类、黄原酸盐类和次磺酰胺类等,其中次磺酰胺类促进剂具有抗烧焦时间长、硫化活性大、硫化平坦性高、力学性能优良等优点,应用最为广泛。促进剂NS(N-叔丁基-2-苯并噻唑次磺酰胺,TBBS)与其他次磺酰胺类促进剂相比,因在硫化过程中不产生致癌毒性物质亚硝胺,被誉为“标准促进剂”。本文回顾了以次氯酸钠为氧化剂合成促进剂NS的传统方法;综述了催化氧化法、氯气氧化法、电解氧化法和双氧水氧化法等绿色合成工艺;简要概述了微通道反应器在合成促进剂NS方面的工业应用。同时简介了促进剂NS在天然橡胶、丁苯橡胶、二氧化硅填充橡胶的改性剂以及合成氨基磷酸酯等领域的应用。
中图分类号:
张天永, 杨坤龙, 崔现宝, 李彬, 宋禹昕, 姜爽. 橡胶促进剂NS的绿色合成工艺与应用研究进展[J]. 化工学报, 2021, 72(2): 876-885.
ZHANG Tianyong, YANG Kunlong, CUI Xianbao, LI Bin, SONG Yuxin, JIANG Shuang. Progress in clean synthesis technology and application of rubber accelerator NS[J]. CIESC Journal, 2021, 72(2): 876-885.
1 | 王树华. 橡胶助剂行业自动化进程回顾及发展展望[J]. 中国橡胶, 2016, 32(3): 16-19. |
Wang S H. Review and development prospect of automation process in rubber additives industry[J]. China Rubber, 2016, 32(3): 16-19. | |
2 | 王仰东, 孙德江, 许春华. 科技创新推动橡胶助剂行业的“绿色”发展[J]. 中国橡胶, 2007, 23(10): 15-18. |
Wang Y D, Sun D J, Xu C H. Scientific and technological innovation promotes the “green” development of rubber additive industry[J]. China Rubber, 2007, 23(10): 15-18. | |
3 | 庞松, 徐新建, 陈家辉, 等. 硫化时间对NR/BR并用胶中交联密度的分布以及胶料耐磨性的影响[J]. 弹性体, 2019, 29(5): 11-16. |
Pang S, Xu X J, Chen J H, et al. Effect of curing time on distribution of crosslinking density in NR/BR blends and wear resistance of rubber compounds[J]. China Elastomerics, 2019, 29(5): 11-16. | |
4 | 郭飞, 张兆想, 宋炜, 等. 橡胶硫化过程数值模拟研究进展[J]. 化工学报, 2020, 71(8): 3393-3402. |
Guo F, Zhang Z X, Song W, et al. Research progress in numerical simulation of rubber vulcanization[J]. CIESC Journal, 2020, 71(8): 3393-3402. | |
5 | 梁馨元, 张磊, 刘琳琳, 等. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532. |
Liang X Y, Zhang L, Liu L L, et al. Study on rubber polymer using computer-aided molecular design method based on molecular dynamics[J]. CIESC Journal, 2019, 70(2): 525-532. | |
6 | Zhang P, Zhao F, Yuan Y, et al. Network evolution based on general-purpose diene rubbers/sulfur/TBBS system during vulcanization (Ⅰ)[J]. Polymer, 2010, 51(1): 257-263. |
7 | Milani G, Milani F. NR sulphur vulcanization: interaction study between TBBS and DPG by means of a combined experimental rheometer and meta-model best fitting strategy[J]. Journal of Computational Methods in Sciences and Engineering, 2016, 16(2): 417-436. |
8 | Rong G Z, Chen Y S, Wang L, et al. A benzoxazole sulfenamide accelerator: synthesis, structure, property, and implication in rubber vulcanization mechanism[J]. Journal of Applied Polymer Science, 2014, 131(6): 39699. |
9 | Sun J T, Wang L L, Liu X L, et al. The preparation of multifunctional accelerators derived from tea phenols and their use in rubber compounds[J]. Journal of Elastomers and Plastics, 2018, 50(1): 58-70. |
10 | 吴沫, 姚丽年. 次磺酰胺类橡胶硫化促进剂的生产与合成工艺现状[J]. 精细石油化工, 1990, (6): 44-47. |
Wu M, Yao L N. Production and synthesis process status of sulfenamide rubber vulcanization accelerators[J]. Fine Petrochemicals, 1990, (6): 44-47. | |
11 | 杨昌金, 廖禄生, 王兵兵, 等. 促进剂NS对环氧化天然橡胶硫化特性与力学性能的影响[J]. 合成材料老化与应用, 2018, 7(6): 39-41. |
Yang C J, Liao L S, Wang B B, et al. Effect of accelerator NS on cure and mechanical properties of epoxidized natural rubber[J]. Synthetic Materials Aging and Application, 2018, 7(6): 39-41. | |
12 | Marzocca A J, Mansilla M A. Vulcanization kinetic of styrene-butadiene rubber by sulfur/TBBS[J]. Journal of Applied Polymer Science, 2006, 101(1): 35-41. |
13 | Marzocca A J, Mansilla M A. Analysis of network structure formed in styrene-butadiene rubber cured with sulfur/TBBS system[J]. Journal of Applied Polymer Science, 2007, 103(2): 1105-1112. |
14 | 赵泽鹏, 雷娟, 陈晓博, 等. 苯并噻唑次磺酰胺类促进剂对钕系顺丁橡胶胶料性能的影响[J]. 橡胶工业, 2018, 65(9): 1026-1028. |
Zhao Z P, Lei J, Chen X B, et al. Effects of benzothiazole sulfenamide accelerators on properties of neodymium butadiene rubber compound[J]. China Rubber Industry, 2018, 65(9): 1026-1028. | |
15 | 周禾大. 促进剂NS合成工艺研究[J]. 精细化工原料及中间体, 2008, (6): 16-18. |
Zhou H D. Synthesis techniques of rubber accelerator NS[J]. Fine Chemical Industrial Raw Materials Intermediates, 2008, (6): 16-18. | |
16 | 万大明. 关于橡胶促进剂TBBS的合成及其市场前景[J]. 特种橡胶制品, 2000, 21(6): 54-57. |
Wan D M. Synthesis and prospect of rubber accelerator TBBS[J]. Special Purpose Rubber Products, 2000, 21(6): 54-57. | |
17 | 徐万平, 邓凤霞, 张征林, 等. 硫化促进剂NS的合成研究[J]. 精细化工, 2000, 17(5): 277-279. |
Xu W P, Deng F X, Zhang Z L, et al. Synthesis of vulcanization accelerator NS[J]. Fine Chemicals, 2000, 17(5): 277-279. | |
18 | 杜孟成, 赵红霞, 李云峰, 等. 氧气氧化法促进剂NS在全钢子午线轮胎胎面胶中的应用试验[J]. 橡胶科技, 2016, 14(2): 20-22. |
Du M C, Zhao H X, Li Y F, et al. Application of accelerator NS produced by oxygen oxidation process in the tread compound of TBR tire[J]. Rubber Science and Technology, 2016, 14(2): 20-22. | |
19 | 王东. 促进剂TBBS开发前景光明[J]. 精细化工原料及中间体, 2007, (5): 32-34. |
Wang D. The development prospect of accelerator TBBS is bright[J]. Fine Chemical Industrial Raw Materials and Intermediates, 2007, (5): 32-34. | |
20 | 孙风娟. 粗促进剂M钠盐合成促进剂TBBS新工艺的研究[J]. 橡胶科技, 2019, 17(5): 257-260. |
Sun F J. Study on accelerator TBBS synthetic process using crude accelerator M sodium salt[J]. Rubber Science and Technology, 2019, 17(5): 257-260. | |
21 | 刘万兴. 次磺酰胺类硫化促进剂NS的合成工艺研究[J]. 云南化工, 2019, 46(4): 54-55+59. |
Liu W X. Study on synthesis of sulfur accelerator NS[J]. Yunnan Chemical Technology, 2019, 46(4): 54-55+59. | |
22 | 马英杰, 宫志杰, 田苗. 促进剂N-叔丁基-2-苯并噻唑次磺酰胺的生产方法: 102285939A[P]. 2011-12-21. |
Ma Y J, Gong Z J, Tian M. Production method of accelerator N-tert-butyl-2-benzothiazole sulfenamide: 102285939A[P]. 2011-12-21. | |
23 | 李树东. 以次氯酸钠为氧化剂合成橡胶硫化促进剂NS的方法: 104557770A[P]. 2015-4-29. |
Li S D. Method of synthesizing rubber vulcanization accelerator NS with sodium hypochlorite as oxidant: 104557770A[P]. 2015-4-29. | |
24 | 朱军. 溶剂法生产橡胶硫化促进剂NS的方法: 103524453A[P]. 2014-01-22. |
Zhu J. Solvent method for producing rubber vulcanization accelerator NS: 103524453A [P]. 2014-01-22. | |
25 | 朱嘉震, 赵新远, 田旭, 等. 氧气氧化法制备橡胶硫化促进剂TBBS: 108586384A[P]. 2018-09-28. |
Zhu J Z, Zhao X Y, Tian X, et al. Preparation of rubber vulcanization accelerator TBBS by oxygen oxidation: 108586384A[P]. 2018-09-28. | |
26 | Mukminova G R, Avrutskaya I A, Novikov V T. Electrochemical synthesis of tert-butyl-2-benzothiazolesulfenamide[J]. Russian Journal of Electrochemistry, 1999, 35(8): 841-845. |
27 | 袁冰芯, 李恒, 唐珊瑜. 一种电化学合成具有S—N键的次磺酰胺化合物的方法: 109338403A[P]. 2019-02-15. |
Yuan B X, Li H, Tang S Y. A method for electrochemical synthesis of sulfenamide compounds with S—N bond: 109338403A[P]. 2019-02-15. | |
28 | 彭华龙, 王小萍, 罗远芳, 等. 促进剂NS的制备及其硫化特性研究[J]. 橡胶工业, 2008, 7: 412-415. |
Peng H L, Wang X P, Luo Y F, et al. Study on preparation and vulcanization characteristics of accelerator NS[J]. China Rubber Industry, 2008, 7: 412-415. | |
29 | 张卫昌, 庄苏桔, 殷守华, 等. 促进剂NS的合成及其在胎面胶中的应用[J]. 特种橡胶制品, 2007, 28(6): 17-19. |
Zhang W C, Zhuang S J, Yin S H, et al. Synthesis of rubber accelerator NS and its application to tread compound[J]. Special Purpose Rubber Products, 2007, 28(6): 17-19. | |
30 | 朱军. 生产橡胶促进剂NS的方法: 10358976A[P]. 2014-01-15. |
Zhu J. Method for producing rubber accelerator NS: 10358976A[P]. 2014-01-15. | |
31 | 王秀猛. 一种环保型N-叔丁基-2-苯并噻唑次磺酰胺(NS)合成工艺: 108727302A[P]. 2018-11-02. |
Wang X M. An environmentally friendly N-tert-butyl-2-benzothiazole sulfenamide(NS) synthesis process: 108727302A[P]. 2018-11-02. | |
32 | Tang S Y, Liu Y, Li L J, et al. Scalable electrochemical oxidant-and metal-free dehydrogenative coupling of S-H/N-H[J]. Organic & Biomolecular Chemistry, 2019, 17(6): 1370-1374. |
33 | Choi S S, Nah C, Jo B W. Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion[J]. Polymer International, 2003, 52(8): 1382-1389. |
34 | Carr E L, Smith G E P, Alliger G. Thiazolesulfenamides1[J]. The Journal of Organic Chemistry, 1949, 14(6): 921-934. |
35 | Taniguchi N. Copper-catalyzed formation of sulfur-nitrogen bonds by dehydrocoupling of thiols with amines[J]. European Journal of Organic Chemistry, 2010, 2010(14): 2670-2673. |
36 | 徐万平, 邓凤霞. 硫化促进剂N-叔丁基-2-苯并噻唑(TBBS)的合成工艺综述[J]. 化工时刊, 2000, (3): 42-44. |
Xu W P, Deng F X. Process summarization of TBBS vulcanization accelerator[J]. Chemical Industry Times, 2000, (3): 42-44. | |
37 | 林闯. 浅析硫化促进剂TBBS的合成[J]. 中国化工贸易, 2013, (7): 402. |
Lin C. Analysis on the synthesis of vulcanization accelerator TBBS[J]. China Chemical Trade, 2013, (7): 402. | |
38 | Robert H. Manufacture of branched chain sulfonamides: US2807620[P]. 1957. |
39 | 张越, 李小云, 李建军. 橡胶硫化促进剂NS的合成[J]. 河北师范大学学报, 1998, 22(2): 82-84+94. |
Zhang Y, Li X Y, Li J J. Using crude 2-mercaptobenzothiazole(M) to prepared N-tert-butylbenzothiazole-2-sulfenamide(NS) directly[J]. Journal of Hebei Normal University, 1998, 22(2): 82-84+94. | |
40 | Zhan N X, Zhang Y, Wang X Z. Solubility of N-tert-butylbenzothiazole-2-sulfenamide in several pure and binary solvents[J]. Journal of Chemical and Engineering Data, 2019, 64(3): 1051-1062. |
41 | 蔡玉照. 硫化促进剂NS的新型合成工艺研究[J]. 山东化工, 2013, 42(8): 5-6. |
Cai Y Z. Study on a new synthetic process of vulcanization accelerator NS[J]. Shandong Chemical Industry, 2013, 42(8): 5-6. | |
42 | 周禾大. 硫化促进剂NS合成工艺研究[J]. 江苏化工, 2008, 36(2): 27-29. |
Zhou H D. Synthesis techniques of accelerator NS[J]. Jiangsu Chemical Industry, 2008, 36(2): 27-29. | |
43 | 曹耀强, 肖波, 卜晓光. 硫化促进剂TBBS合成研究[J]. 石化技术与应用, 2004, 22(4): 252-256. |
Cao Y Q, Xiao B, Bu X G. Synthesis of vulcanization accelerator TBBS[J]. Petrochemical Technology & Application, 2004, 22(4): 252-256. | |
44 | 朱嘉震, 王金才, 田旭, 等. 利用微通道反应器制备橡胶促进剂NS的方法: 106866578A[P]. 2017-06-20. |
Zhu J Z, Wang J C, Tian X, et al. Preparation of rubber accelerator NS in microchannel reactor: 106866578A[P]. 2017-06-20. | |
45 | 王文博, 杜孟成, 郑崇纳, 等. 橡胶硫化促进剂NS废水处理工艺: 101407344[P]. 2009-04-15. |
Wang W B, Du M C, Zheng C N, et al. Process for treating waste water of rubber vulcanization accelerator NS production: 101407344[P]. 2009-04-15. | |
46 | Rattanangkool E, Krailat W, Vilaivan T, et al. Hypervalent iodine(Ⅲ)-promoted metal-free S-H activation: an approach for the construction of S-S, S-N, and S-C bonds[J]. European Journal of Organic Chemistry, 2014, 2014(22): 4795-4804. |
47 | Lee C, Lim Y N, Jang H Y. Copper-catalyzed synthesis of N-formyl/acylsulfenamides and -thiosulfonamides[J]. European Journal of Organic Chemistry, 2015, 2015(27): 5934-5938. |
48 | Sakagami K, Jin X J, Suzuki K, et al. Synthesis of N-acylsulfenamides through aerobic cross dehydrogenative coupling of thiols and amides by supported copper hydroxide catalyst[J]. Chemistry Letters, 2016, 45(2): 173-175. |
49 | Raymond J. Process for the preparation of thiazolesulphenamides: US4182873[P]. 1980. |
50 | Kleinwallstadt H Z, Obernburgeisenbach L E, Erlenbach M B. Process for the production of thiazoly-2-sulphcnamidcs: US4670556A[P]. 1987-06-02. |
51 | 杜孟成, 刘红, 陈宝喜, 等. 氧气氧化法合成促进剂NS的工艺及其应用[J]. 轮胎工业, 2011, 31(8): 484-488. |
Du M C, Liu H, Chen B X, et al. Synthesis of accelerator NS by oxygen oxidation process and its applications[J]. Tire Industry, 2011, 31(8): 484-488. | |
52 | 尹红伟. 促进剂N-叔丁基苯并噻唑次磺酰胺生产中的催化剂及制备方法: 102309986A[P]. 2012-01-11. |
Yin H W. Catalyst and preparation method for the production of accelerant N-tert-butylbenzothiazole sulfenamide: 102309986A[P]. 2012-01-11. | |
53 | Dou Y C, Huang X, Wang H, et al. Reusable cobalt-phthalocyanine in water: efficient catalytic aerobic oxidative coupling of thiols to construct S-N/S-S bonds[J]. Green Chemistry, 2017, 19(11): 2491-2495. |
54 | Yang L T, Li S D, Dou Y C, et al. TEMPO-catalyzed aerobic oxidative coupling of thiols for metal-free formation of S-N/S-S bonds[J]. Asian Journal of Organic Chemistry, 2017, 6(3): 265-268. |
55 | 刘小培, 邢青峰, 董学亮, 等. N-叔丁基-2-苯并噻唑次磺酰胺的合成工艺研究进展[J]. 化学研究, 2012, 23(3): 103-105. |
Liu X P, Xing Q F, Dong X L, et al. Progress of synthesis technology of N-tert-butyl-2-benzothiazole sulfenamide[J]. Chemical Research, 2012, 23(3): 103-105. | |
56 | Torii S, Tanaka H, Ukida M. Electrosynthesis of hetero-hetero atom bonds. 2. An efficient preparation of (2-bcnzothiazoiyl)-and thiocarbamoylsulfenamides by electrolytic cross-coupling reaction of 2-mercaptobenzothiazole, bis(2-benzothiazolyl) disulfide, and/or bis(dialkylthiocarbamoyl)disulfides with various amines[J]. The Journal of Organic Chemistry, 1978, 13(16): 3223-3227. |
57 | 丁俊杰, 王飞. 电解氧化法制备促进剂NS的工艺研究[J]. 中国橡胶, 2018, 34(1): 48-50. |
Ding J J, Wang F. Study on the preparation of accelerator NS by electrolytic oxidation[J]. China Rubber, 2018, 34(1): 48-50. | |
58 | 李中贤, 刘小培, 王俊伟, 等. 一种水相中电解法合成橡胶硫化促进剂TBBS工艺: 104109879A[P]. 2014-10-22. |
Li Z X, Liu X P, Wang J W, et al. A process for synthesizing rubber vulcanization accelerator TBBS by electrolysis in aqueous phase: 104109879A[P]. 2014-10-22. | |
59 | Mukminova G R, Simonov M D, Chernykh G V, et al. Electrosynthesis of N-tert-butyl-2-benzothiazolesulfenamide[J]. Russian Journal of Electrochemistry, 2001, 37(1): 107-111. |
60 | 刘洋, 曾庆乐, 唐红艳, 等. 绿色化学试剂过氧化氢在有机合成中的应用研究进展[J]. 有机化学, 2011, 31(7): 986-996. |
Liu Y, Zeng Q L, Tang H Y, et al. Progress on organic synthesis using hydrogen peroxide as a green chemical reagent[J]. Chinese Journal of Organic Chemistry, 2011, 31(7): 986-996. | |
61 | Dormauen S G, Temse L F, Hoevenen D S, et al. Process for preparing storage-stable benzothiazolyl sulfenamides: US0167340A1[P]. 2004-08-26. |
62 | 谭雄文, 徐军才. 橡胶硫化促进剂NS的合成研究[J]. 广东化工, 2006, 33(5): 16-17. |
Tan X W, Xu J C. Synthesis of rubber accelerator NS[J]. Guangdong Chemical Industry, 2006, 33(5): 16-17. | |
63 | 贾太轩, 宋国全, 郭尧, 等. N-叔丁基-2-苯并噻唑次磺酰胺制备及其光谱分析[J]. 光谱学与光谱分析, 2016, 36(7): 2213-2216. |
Jia T X, Song G Q, Guo Y, et al. Study on the preparation of N-tert-butyl-2-benzothiazole sulfenamide and its spectral analysis[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2213-2216. | |
64 | 朱军. 以双氧水为氧化剂两步法合成橡胶硫化促进剂NS的方法: 102838562A[P]. 2012-12-26. |
Zhu J. Two-step synthesis of rubber vulcanization accelerator NS with hydrogen peroxide as oxidant: 102838562A[P]. 2012-12-26. | |
65 | Kobayashi J, Mori Y, Kobayashi S. Multiphase organic synthesis in microchannel reactors[J]. Chemistry-an Asian Journal, 2006, 1(1/2): 22-35. |
66 | Ulissi Z W, Strano M S, Braatz R D. Control of nano and microchemical systems[J]. Computers & Chemical Engineering, 2013, 51: 149-156. |
67 | Makarshin L L, Pai Z P, Parmon V N. Microchannel systems for fine organic synthesis[J]. Russian Chemical Reviews, 2016, 85(2): 139-155. |
68 | Ghorai S, Jalan A K, Roy M, et al. Tuning of accelerator and curing system in devulcanized green natural rubber compounds[J]. Polymer Testing, 2018, 69: 133-145. |
69 | Gradwell M H S, van der Merwe M J. 2-t-Butylbenzothiazole sulfenamide accelerated sulfur vulcanization of polyisoprene[J]. Rubber Chemistry and Technology, 1999, 72(1): 65-73. |
70 | 程涛. 丁苯橡胶的合成工艺及发展[J]. 化工设计通讯, 2017, 43(1): 60. |
Cheng T. Synthesis and development of styrene butadiene rubber[J]. Chemical Engineering Design Communication, 2017, 43(1): 60. | |
71 | Sedlova N G, Shilov I B, Fomin S V, et al. Synthesis of a modifier for rubbers with silica-filler by reaction of N-tert-butyl-2-benzothiazolylsulfenamide with trimethylolpropane triglycidyl ether and characterization of the reaction product[J]. Russian Journal of Applied Chemistry, 2018, 91(7): 1188-1192. |
72 | Oliveira F M, Barbosa L C A, Ismail F M D. The diverse pharmacology and medicinal chemistry of phosphoramidates-a review[J]. RSC Advances, 2014, 4(36): 18998-19012. |
73 | Brownbridge P, Jowett I C. On the reaction of benzothiazol-2-yl sulfenamides with phosphites[J]. Phosphorus Sulfur and Silicon and the Related Elements, 1988, 35(3/4): 311-318. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[14] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[15] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||