化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2869-2877.DOI: 10.11949/0438-1157.20201320
收稿日期:
2020-09-17
修回日期:
2020-11-23
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
何孝军
作者简介:
焦帅(1994—),男,硕士研究生,基金资助:
JIAO Shuai(),YANG Lei,WU Tingting,LI Hongqiang,LYU Huihong,HE Xiaojun()
Received:
2020-09-17
Revised:
2020-11-23
Online:
2021-05-05
Published:
2021-05-05
Contact:
HE Xiaojun
摘要:
分级多孔碳在电化学储能方面展现了巨大的潜力。模板与活化法相耦合是制备分级多孔碳最有效的方法之一。然而,该方法使用强酸和强碱,对环境造成污染。因此,开发一种无酸无碱制备分级多孔碳的方法迫在眉睫。以氯化钠和碳酸钠混合盐为模板,煤沥青为碳前体,碳酸钾为活化剂,合成了氮掺杂分级多孔碳纳米片(NHCNs)。模板与活化剂可以通过水洗除去,无需使用强酸和强碱,该工作为合成分级多孔碳纳米片提供了一种无酸无碱的技术。合成的NHCNs具有大的比表面积(1597 m2·g-1)、丰富的微/中孔、适量的氧和氮杂原子。这些独特结构赋予NHCNs电极优异的超级电容性能。在KOH电解液中,NHCNs电极显示了高的比电容和好的循环稳定性。
中图分类号:
焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877.
JIAO Shuai, YANG Lei, WU Tingting, LI Hongqiang, LYU Huihong, HE Xiaojun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template[J]. CIESC Journal, 2021, 72(5): 2869-2877.
图2 NHCN3(a), NHCN4(b), NHCN5(c)的扫描电镜图;NHCN4的透射电镜图(d);NHCN4的高分辨率透射电镜图(e)
Fig.2 FESEM images of NHCN3 (a), NHCN4 (b), NHCN5 (c); TEM image of NHCN4 (d); High resolution TEM image of NHCN4 (e)
图3 NHCNs的N2吸脱附等温线(a);孔径分布(b);XRD谱图(c);Raman谱图(d)
Fig.3 Nitrogen adsorption-desorption isotherms (a); Pore size distribution (b); XRD pattern (c); Raman spectra of NHCNs (d)
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
NHCN3 | 2.46 | 1453 | 1244 | 0.89 | 0.78 |
NHCN4 | 2.63 | 1597 | 1482 | 1.05 | 1.00 |
NHCN5 | 2.40 | 1324 | 309 | 0.79 | 0.16 |
表1 NHCNs的孔结构参数
Table 1 The pore structure parameters of NHCNs
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
NHCN3 | 2.46 | 1453 | 1244 | 0.89 | 0.78 |
NHCN4 | 2.63 | 1597 | 1482 | 1.05 | 1.00 |
NHCN5 | 2.40 | 1324 | 309 | 0.79 | 0.16 |
Samples | Element content/%(atom) | N 1s content/%(atom) | ||||
---|---|---|---|---|---|---|
C 1s | O 1s | N 1s | N-5 | N-6 | N-Q | |
NHCN3 | 86.76 | 9.61 | 3.63 | 1.11 | 1.35 | 1.17 |
NHCN4 | 89.46 | 6.82 | 3.72 | 1.46 | 0.86 | 1.40 |
NHCN5 | 93.04 | 4.94 | 2.03 | 0.59 | 0.75 | 0.69 |
表2 NHCNs中碳、氧和氮元素含量
Table 2 Contents of carbon, oxygen and nitrogen elements in NHCNs
Samples | Element content/%(atom) | N 1s content/%(atom) | ||||
---|---|---|---|---|---|---|
C 1s | O 1s | N 1s | N-5 | N-6 | N-Q | |
NHCN3 | 86.76 | 9.61 | 3.63 | 1.11 | 1.35 | 1.17 |
NHCN4 | 89.46 | 6.82 | 3.72 | 1.46 | 0.86 | 1.40 |
NHCN5 | 93.04 | 4.94 | 2.03 | 0.59 | 0.75 | 0.69 |
图5 NHCNs电极在扫描速率为2 mV·s-1下的CV曲线(a);NHCN4电极在不同扫描速率下的CV曲线(b);NHCNs电极在0.05 A·g-1电流密度下的GCD曲线(c);NHCNs电极在不同电流密度时的比电容图(d)
Fig.5 CV curves of NHCN electrodes at the scan rate of 2 mV·s-1(a); CV curves of NHCN4 electrode at different scan rates (b); GCD curves of NHCN electrodes at 0.05 A·g-1 (c); Specific capacitance of NHCN electrodes at various current densities (d)
Samples | Specific capacitance/(F·g-1) | Ref. |
---|---|---|
NHCN4 | 239 (0.05 A·g-1) | this work |
PB-15 | 199 (0.5 A·g-1) | [ |
ET-rGO | 124 (0.1 A·g-1) | [ |
HPC/500/1/6∶1 | 143 (0.625 A·g-1) | [ |
P-C-600 | 168 (1 A·g-1) | [ |
N-HPC-900 | 128.5 (0.2 A·g-1) | [ |
表3 不同碳电极材料的比电容
Table 3 The specific capacitance of different carbon electrode materials
Samples | Specific capacitance/(F·g-1) | Ref. |
---|---|---|
NHCN4 | 239 (0.05 A·g-1) | this work |
PB-15 | 199 (0.5 A·g-1) | [ |
ET-rGO | 124 (0.1 A·g-1) | [ |
HPC/500/1/6∶1 | 143 (0.625 A·g-1) | [ |
P-C-600 | 168 (1 A·g-1) | [ |
N-HPC-900 | 128.5 (0.2 A·g-1) | [ |
图6 NHCNs电容器的Ragone图(a);NHCNs电极的 Nyquist 图(b);NHCNs电极的 Bode图(c);NHCN4电极在5 A·g-1电流密度下循环10000次的比电容保持率(d)
Fig.6 Ragone plots of NHCN capacitors(a); Nyquist plots of NHCN electrodes (b); Bode plots of NHCN electrodes (c); Capacitance retention of NHCN4 electrode at 5 A·g-1 after 10000 cycles (d)
1 | Banham D, Choi J Y, Kishimoto T, et al. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices[J]. Advanced Materials, 2019, 31(31): 1804846. |
2 | Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials, 2019, 29(51): 1906282. |
3 | Liu T, Zhang F, Song Y, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J]. Journal of Materials Chemistry A, 2017, 5(34): 17705-17733. |
4 | Fang K, Liu D, Xiang X Y, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design[J]. Nano Energy, 2020, 69: 104451. |
5 | She Z M, Ghosh D, Pope M A. Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors[J]. ACS Nano, 2017, 11(10): 10077-10087. |
6 | Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials, 2018, 30(15): 1705789. |
7 | Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
8 | He X J, Ling P H, Qiu J S, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240: 109-113. |
9 | Li J H, Liu Z C, Zhang Q B, et al. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors[J]. Nano Energy, 2019, 57: 22-33. |
10 | Fu L J, Qu Q T, Holze R, et al. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?[J]. Journal of Materials Chemistry A, 2019, 7(25): 14937-14970. |
11 | Han Y Q, Dai L M. Conducting polymers for flexible supercapacitors[J]. Macromolecular Chemistry and Physics, 2019, 220(3): 1800355. |
12 | Zhang G L, Guan T T, Cheng M, et al. Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors[J]. Journal of Power Sources, 2020, 448: 227446. |
13 | Jiang H, Lee P S, Li C Z. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science, 2013, 6(1): 41-53. |
14 | Li X G, Guan B Y, Gao S Y, et al. A·general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy & Environmental Science, 2019, 12(2): 648-655. |
15 | 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J]. 物理化学学报, 2020, 36(2): 142-149. |
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 142-149. | |
16 | Xie X Y, He X J, Zhang H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal, 2018, 350: 49-56. |
17 | He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. |
18 | He X J, Li X J, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340: 183-191. |
19 | Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 1-12. |
20 | Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263. |
21 | Hunsom M, Autthanit C. Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH[J]. Chemical Engineering Journal, 2013, 229: 334-343. |
22 | He X J, Xie X Y, Wang J X, et al. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale, 2019, 11(14): 6610-6619. |
23 | Borchardt L, Leistenschneider D, Haase J, et al. Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors[J]. Advanced Energy Materials, 2018, 8(24): 1800892. |
24 | Zhao C R, Wang W K, Yu Z B, et al. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. Journal of Materials Chemistry, 2010, 20(5): 976-980. |
25 | Dong S A, He X J, Zhang H F, et al. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(33): 15954-15960. |
26 | Wan L, Song P, Liu J X, et al. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors[J]. Journal of Power Sources, 2019, 438: 227013. |
27 | Sun F, Gao J H, Liu X, et al. High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode[J]. Electrochimica Acta, 2016, 213: 626-632. |
28 | Wu F M, Gao J P, Zhai X G, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors[J]. Carbon, 2019, 147: 242-251. |
29 | 赵婧, 龚俊伟, 李一举, 等. 自掺杂氮多孔交联碳纳米片在超级电容器中的应用[J]. 化学学报, 2018, 76(2): 107-112. |
Zhao J, Gong J W, Li Y J, et al. Self N-doped porous interconnected carbon nanosheets material for supercapacitors[J]. Acta Chimica Sinica, 2018, 76(2): 107-112. | |
30 | 毕宏晖, 焦帅, 魏风, 等. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888. |
Bi H H, Jiao S, Wei F, et al. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888. | |
31 | Zhang M, Chen M, Reddeppa N, et al. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes[J]. Nanoscale, 2018, 10(14): 6549-6557. |
32 | Zhang X Z, Raj D V, Zhou X F, et al. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors[J]. Journal of Power Sources, 2018, 382: 95-100. |
33 | Pang L Y, Zou B, Zou Y C, et al. A new route for the fabrication of corn starch-based porous carbon as electrochemical supercapacitor electrode material[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 26-33. |
34 | Xu D, Ding Q J, Li J X, et al. A sheet-like MOF-derived phosphorus-doped porous carbons for supercapacitor electrode materials[J]. Inorganic Chemistry Communications, 2020, 119: 108141. |
35 | Shang Z, An X Y, Liu L Q, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107. |
36 | Zhang G L, Guan T T, Qiao J L, et al. Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors[J]. Energy Storage Materials, 2020, 26: 119-128. |
37 | Xu R X, Zhao Y P, Liu G H, et al. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 558: 211-219. |
38 | Deng Y F, Xie Y, Zou K X, et al. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(4): 1144-1173. |
39 | 乐丹, 杨建校, 孙兵, 等. 中空氮掺杂沥青基活性炭纤维的结构调控与电化学性能[J]. 新型炭材料, 2020, 35(1): 50-57. |
Yue D, Yang J X, Sun B, et al. Preparation and electrochemical performance of the N-doped hollow pitch-based activated carbon fibers as supercapacitor electrodes[J]. New Carbon Materials, 2020, 35(1): 50-57. | |
40 | Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[4] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[5] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[6] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[13] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[14] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||