化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3984-3996.DOI: 10.11949/0438-1157.20201704
收稿日期:
2020-11-30
修回日期:
2021-01-18
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
颜伟城
作者简介:
聂新斌(1997—),男,硕士研究生,基金资助:
Xinbin NIE(),Dehao ZHANG,Weicheng YAN()
Received:
2020-11-30
Revised:
2021-01-18
Online:
2021-08-05
Published:
2021-08-05
Contact:
Weicheng YAN
摘要:
集中介绍了一种具备高附加值的基础型中空结构载体材料——微泡。从微泡制备方法的更新改善到形貌和尺寸的可控研究,再从微泡材料稳定性控制到功能化改性修饰,进行了全面综述。此外,还详细地介绍了近年来微泡在不同行业的应用以及不同领域研究者对于微泡材料创新应用特性的研究。最后,探讨了微泡材料的制备和功能化的研究趋势和存在问题。
中图分类号:
聂新斌, 张德浩, 颜伟城. 功能型微泡材料的研究进展[J]. 化工学报, 2021, 72(8): 3984-3996.
Xinbin NIE, Dehao ZHANG, Weicheng YAN. Research progress of functional microbubble materials[J]. CIESC Journal, 2021, 72(8): 3984-3996.
68 | Qin S, Caskey C F, Ferrara K W. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering[J]. Physics in Medicine and Biology, 2009, 54(6): R27-R57. |
69 | Chowdhury S M, Abou-Elkacem L, Lee T, et al. Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook[J]. Journal of Controlled Release, 2020, 326: 75-90. |
70 | 赖斌. 载多西紫杉醇脂质微泡联合超声靶向破裂对人胃癌细胞增殖及凋亡影响的研究[D]. 南昌: 南昌大学, 2019. |
Lai B. Study on the effect of docetaxel lipid microbubbles combined with ultrasound-targeted on proliferation and apoptosis of human gastric cancer cells[D]. Nanchang: Nanchang University, 2019. | |
71 | Deelman L E, Declèves A E, Rychak J J, et al. Targeted renal therapies through microbubbles and ultrasound[J]. Advanced Drug Delivery Reviews, 2010, 62(14): 1369-1377. |
72 | Otani K, Kamiya A, Miyazaki T, et al. Surface modification with lactadherin augments the attachment of sonazoid microbubbles to glycoprotein IIb/IIIa[J]. Ultrasound in Medicine & Biology, 2019, 45(6): 1455-1465. |
73 | Tayier B, Deng Z, Wang Y, et al. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound[J]. Nanoscale, 2019, 11(31): 14757-14768. |
74 | Klintham P, Tongchitpakdee S, Chinsirikul W, et al. Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella Typhimurium on Thai leafy vegetables[J]. Food Control, 2017, 77: 260-269. |
75 | Kobayashi F, Odake S. Application of a two-stage system with pressurized carbon dioxide microbubbles for inactivating enzymes and microorganisms in unpasteurized sake and unfiltered beer[M]//Alcoholic Beverages. Amsterdam: Elsevier, 2019: 199-241. |
76 | Wright A, Taglioli M, Montazersadgh F, et al. Microbubble-enhanced DBD plasma reactor: design, characterisation and modelling[J]. Chemical Engineering Research and Design, 2019, 144: 159-173. |
1 | Sirsi S R, Borden M A. Microbubble compositions, properties and biomedical applications[J]. Bubble Science, Engineering & Technology, 2009, 1(1/2): 3-17. |
2 | Cosgrove D. Ultrasound contrast agents: an overview[J]. European Journal of Radiology, 2006, 60(3): 324-330. |
3 | Stride E, Saffari N. Microbubble ultrasound contrast agents: a review[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 2003, 217(6): 429-447. |
4 | Lindner J R. Microbubbles in medical imaging: current applications and future directions[J]. Nature Reviews Drug Discovery, 2004, 3(6): 527-533. |
5 | 王巍, 张秋禹, 张和鹏, 等. 医学造影用微泡材料制备方法研究进展[J]. 材料导报, 2007, 21(10): 47-50, 61. |
Wang W, Zhang Q Y, Zhang H P, et al. Advances in preparation method of microbubbles used for medical imaging[J]. Materials Review, 2007, 21(10): 47-50, 61. | |
6 | George S D, Chidangil S, Mathur D. Minireview: laser-induced formation of microbubbles—biomedical implications[J]. Langmuir, 2019, 35(31): 10139-10150. |
7 | Wyss H M, Blair D L, Morris J F, et al. Mechanism for clogging of microchannels[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(6): 061402. |
8 | Dietrich N, Mayoufi N, Poncin S, et al. Bubble formation at an orifice: a multiscale investigation[J]. Chemical Engineering Science, 2013, 92: 118-125. |
9 | Fu T T, Ma Y G. Bubble formation and breakup dynamics in microfluidic devices: a review[J]. Chemical Engineering Science, 2015, 135: 343-372. |
10 | Pulsipher K W, Hammer D A, Lee D, et al. Engineering theranostic microbubbles using microfluidics for ultrasound imaging and therapy: a review[J]. Ultrasound in Medicine & Biology, 2018, 44(12): 2441-2460. |
11 | Farook U, Stride E, Edirisinghe M J. Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization[J]. Journal of the Royal Society Interface Interface, 2009, 6(32): 271-277. |
12 | Farook U, Stride E, Edirisinghe M J. Stability of microbubbles prepared by co-axial electrohydrodynamic atomisation[J]. European Biophysics Journal, 2009, 38(5): 713-718. |
13 | Enayati M, Chang M W, Bragman F, et al. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382(1/2/3): 154-164. |
14 | Yan W C, Ong X J, Pun K T, et al. Preparation of tPA-loaded microbubbles as potential theranostic agents: a novel one-step method via coaxial electrohydrodynamic atomization technique[J]. Chemical Engineering Journal, 2017, 307: 168-180. |
15 | 赵应征, 张彦. 微泡超声造影剂的研究进展[J]. 国外医学.药学分册, 2003, 30(5): 298-302. |
Zhao Y Z, Zhang Y. Research progress of microbubble ultrasonic contrast agent[J]. Foreign Medical Sciences Section on Pharmacy, 2003, 30(5): 298-302. | |
16 | de Saint Victor M, Crake C, Coussios C C, et al. Properties, characteristics and applications of microbubbles for sonothrombolysis[J]. Expert Opinion on Drug Delivery, 2014, 11(2): 187-209. |
17 | Jang W, Nikolov A, Wasan D T. The destabilization of aerated food products[J]. Journal of Food Engineering, 2006, 76(2): 256-260. |
18 | Malik M A, Ghaffar A, Malik S A. Water purification by electrical discharges[J]. Plasma Sources Science and Technology, 2001, 10(1): 82-91. |
19 | Yun S, Giri S S, Kim H J, et al. Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach[J]. Fish & Shellfish Immunology, 2019, 91: 12-18. |
20 | Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities[J]. Arabian Journal of Chemistry, 2019, 12(7): 908-931. |
21 | 张阳, 米成嵘, 王文. 靶向微泡超声造影剂的研究进展[J]. 宁夏医科大学学报, 2016, 38(4): 475-479. |
Zhang Y, Mi C R, Wang W. Research progress of targeted microbubble ultrasound contrast agents[J]. Journal of Ningxia Medical University, 2016, 38(4): 475-479. | |
22 | Mohamedi G, Azmin M, Pastoriza-Santos I, et al. Effects of gold nanoparticles on the stability of microbubbles[J]. Langmuir, 2012, 28(39): 13808-13815. |
23 | Chen H S, Li J, Zhou W Z, et al. Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles[J]. Langmuir, 2014, 30(15): 4262-4266. |
24 | Unnikrishnan S, Klibanov A L. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application[J]. American Journal of Roentgenology, 2012, 199(2): 292-299. |
25 | Nosrati H, Sefidi N, Sharafi A, et al. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug[J]. Bioorganic Chemistry, 2018, 76: 501-509. |
26 | Al-Jawadi S, Thakur S S. Ultrasound-responsive lipid microbubbles for drug delivery: a review of preparation techniques to optimise formulation size, stability and drug loading[J]. International Journal of Pharmaceutics, 2020, 585: 119559. |
27 | Owen J, Crake C, Lee J Y, et al. A versatile method for the preparation of particle-loaded microbubbles for multimodality imaging and targeted drug delivery[J]. Drug Delivery and Translational Research, 2018, 8(2): 342-356. |
28 | 张平平, 张鉴, 李军, 等. 一种新的药物传递系统: 超声微泡剂[J]. 中国医院药学杂志, 2008, 28(13): 1110-1112. |
Zhang P P, Zhang J, Li J, et al. A new drug delivery system: ultrasonic microfoaming agent [J]. Chinese Journal of Hospital Pharmacy, 2008, 28(13): 1110-1112. | |
29 | 谭开彬, 高云华, 刘平, 等. 机械振荡法制备脂膜超声造影剂的初步实验研究[J]. 中国超声医学杂志, 2006, 22(8): 561-563. |
Tan K B, Gao Y H, Liu P, et al. Preparation of lipid-coated ultrasound contrast agent by mechanical shaking: a preliminary experimental study[J]. Chinese Journal of Ultrasound in Medicine, 2006, 22(8): 561-563. | |
30 | Cho S H, Kim J Y, Kim J D. Dynamic surface tension of stable air-filled microbubbles prepared by freeze-drying a solution of lipid/surfactant mixture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284/285: 453-457. |
31 | Bjerknes K, Sontum P C, Smistad G, et al. Preparation of polymeric microbubbles: formulation studies and product characterisation[J]. International Journal of Pharmaceutics, 1997, 158(2): 129-136. |
32 | Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992, 593(1/2): 253-258. |
33 | Wan J D, Bick A, Sullivan M, et al. Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles[J]. Advanced Materials, 2008, 20(17): 3314-3318. |
34 | Yasuno M, Sugiura S, Iwamoto S, et al. Monodispersed microbubble formation using microchannel technique[J]. AIChE Journal, 2004, 50(12): 3227-3233. |
35 | Xu J H, Li S W, Chen G G, et al. Formation of monodisperse microbubbles in a microfluidic device[J]. AIChE Journal, 2006, 52(6): 2254-2259. |
36 | Yang L, Wang K, Tan J, et al. Experimental study of microbubble coalescence in a T-junction microfluidic device[J]. Microfluidics and Nanofluidics, 2012, 12(5): 715-722. |
37 | Farook U, Zhang H B, Edirisinghe M J, et al. Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization[J]. Medical Engineering & Physics, 2007, 29(7): 749-754. |
38 | Xie J W, Jiang J, Davoodi P, et al. Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials[J]. Chemical Engineering Science, 2015, 125: 32-57. |
39 | Yan W C, Tong Y W, Wang C H. Coaxial electrohydrodynamic atomization toward large scale production of core-shell structured microparticles[J]. AIChE Journal, 2017, 63(12): 5303-5319. |
40 | Xu Q X, Qin H, Yin Z Y, et al. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres[J]. Chemical Engineering Science, 2013, 104: 330-346. |
41 | Chen C P, Liu W F, Jiang P, et al. Coaxial electrohydrodynamic atomization for the production of drug-loaded micro/nanoparticles[J]. Micromachines, 2019, 10(2): E125. |
42 | Farook U, Stride E, Edirisinghe M J, et al. Microbubbling by co-axial electrohydrodynamic atomization[J]. Medical & Biological Engineering & Computing, 2007, 45(8): 781-789. |
43 | Yan W C, Chua Q W, Ong X J, et al. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA[J]. Journal of Colloid and Interface Science, 2017, 501: 282-293. |
44 | Parhizkar M, Stride E, Edirisinghe M. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing[J]. Lab on a Chip, 2014, 14(14): 2437-2446. |
45 | Fan C H, Ting C Y, Liu H L, et al. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment[J]. Biomaterials, 2013, 34(8): 2142-2155. |
46 | Mahalingam S, Raimi-Abraham B T, Craig D Q M, et al. Formation of protein and protein-gold nanoparticle stabilized microbubbles by pressurized gyration[J]. Langmuir, 2015, 31(2): 659-666. |
47 | Peng Y F, Seekell R P, Cole A R, et al. Interfacial nanoprecipitation toward stable and responsive microbubbles and their use as a resuscitative fluid[J]. Angewandte Chemie International Edition, 2018, 57(5): 1271-1276. |
48 | Han Y, Liu Y F, Jiang H, et al. Large scale preparation of microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass transfer characteristics[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2176-2185. |
49 | Duncan P B, Needham D. Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein-Plesset model for an aniline-water system[J]. Langmuir, 2006, 22(9): 4190-4197. |
50 | Borden M A, Longo M L. Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length[J]. Langmuir, 2002, 18(24): 9225-9233. |
51 | Kabalnov A, Wennerström H. Diffusion in evaporating solutions[J]. Soft Matter, 2009, 5(23): 4712-4718. |
52 | Kwan J J, Borden M A. Microbubble dissolution in a multigas environment[J]. Langmuir, 2010, 26(9): 6542-6548. |
53 | Oeffinger B E, Lathia J D, Dhoot N O, et al. Modification of surfactant contrast agent for targeted ultrasound imaging[C]//Proceedings of the Annual Northeast Bioengineering Conference. IEEE 29th Annual Northeast Bioengineering Conference. United States: Institute of Electrical and Electronics Engineers Inc., 2003:305-306. |
54 | Singhal S, Moser C C, Wheatley M A. Surfactant-stabilized microbubbles as ultrasound contrast agents: stability study of Span 60 and Tween 80 mixtures using a Langmuir trough[J]. Langmuir, 1993, 9(9): 2426-2429. |
55 | Mørch Ý, Hansen R E, Berg S, et al. Nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery[J]. Contrast Media & Molecular Imaging, 2015, 10(5): 356-366. |
56 | Ma X C, Bussonniere A, Liu Q X. A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut's reagent[J]. Ultrasonics Sonochemistry, 2017, 36: 454-465. |
57 | Zhang C Y, Wang Z, Wang C N, et al. Highly uniform perfluoropropane-loaded cerasomal microbubbles as a novel ultrasound contrast agent[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15024-15032. |
58 | Cavalieri F, Zhou M F, Tortora M, et al. Methods of preparation of multifunctional microbubbles and their in vitro /in vivo assessment of stability, functional and structural properties[J]. Current Pharmaceutical Design, 2012, 18(15): 2135-2151. |
59 | Pu G. The microstructure and dissolution behavior of lipid-monolayer-coated, air-filled microbubble[D]. Davis: University of California, Davis, 2006. |
60 | Brugarolas T, Park B J, Lee M H, et al. Generation of amphiphilic Janus bubbles and their behavior at an air-water interface[J]. Advanced Functional Materials, 2011, 21(20): 3924-3931. |
61 | Brugarolas T, Gianola D S, Zhang L, et al. Tailoring and understanding the mechanical properties of nanoparticle-shelled bubbles[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11558-11572. |
62 | Anselmo A C, Mitragotri S. Nanoparticles in the clinic[J]. Bioengineering & Translational Medicine, 2016, 1(1): 10-29. |
63 | Brismar T B, Grishenkov D, Gustafsson B, et al. Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging[J]. Biomacromolecules, 2012, 13(5): 1390-1399. |
64 | Tay L M, Xu C J. Coating microbubbles with nanoparticles for medical imaging and drug delivery[J]. Nanomedicine (London, England), 2017, 12(2): 91-94. |
65 | Seo M, Gorelikov I, Williams R, et al. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy[J]. Langmuir, 2010, 26(17): 13855-13860. |
66 | Ke H T, Xing Z W, Zhao B, et al. Quantum-dot-modified microbubbles with bi-mode imaging capabilities[J]. Nanotechnology, 2009, 20(42): 425105. |
67 | Xiong X Y, Zhao F L, Shi M R, et al. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics[J]. Journal of Biomaterials Science, Polymer Edition, 2011, 22(4/5/6): 417-428. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[5] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[6] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[7] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[8] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[9] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[10] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[11] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[12] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[13] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[14] | 梁梦欣, 郭艳, 王世栋, 张宏伟, 袁珮, 鲍晓军. 氮化碳负载钯催化剂的制备及对SBS选择性催化加氢性能的研究[J]. 化工学报, 2023, 74(2): 766-775. |
[15] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
阅读次数 | ||||||||||||||||||||||
全文 784
|
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||