化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5123-5131.DOI: 10.11949/0438-1157.20210470
丛山昊1(),刘竞婷1,2(),王贵超1,2,孙逊1,2,陈颂英1,2
收稿日期:
2021-04-06
修回日期:
2021-06-09
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
刘竞婷
作者简介:
丛山昊(1992—),男,硕士研究生,基金资助:
Shanhao CONG1(),Jingting LIU1,2(),Guichao WANG1,2,Xun SUN1,2,Songying CHEN1,2
Received:
2021-04-06
Revised:
2021-06-09
Online:
2021-10-05
Published:
2021-10-05
Contact:
Jingting LIU
摘要:
通过流场-声场同步测试实验,观测自由液面处双悬停气泡几近同时破裂,引起液面波动的瞬态流动行为与声学特性。利用短时傅里叶变换提取了声音信号的时-频谱图,同步分析了气泡破裂过程图像和声压图谱。结果表明,双悬停气泡相继破裂,气泡Ⅰ射流形成和气泡Ⅱ体积急剧收缩的时刻重叠,存在高于单气泡破裂0.5 Pa的声压激增现象,该声压峰值均大于单气泡破裂、体积急剧收缩、射流引起的声压幅值。双悬停气泡破裂引起的液面波动相向传播重叠时刻,也存在明显的声压峰值。其中,气泡Ⅰ射流形成和气泡Ⅱ体积急剧收缩重叠时刻的声信号中心频率约为1078 Hz;双悬停气泡破裂引起的液面振动波叠加时刻具有两个频域峰值,中心频率分别为1242 Hz和2063 Hz。
中图分类号:
丛山昊,刘竞婷,王贵超,孙逊,陈颂英. 自由液面处双悬停气泡破裂声特性研究[J]. 化工学报, 2021, 72(10): 5123-5131.
Shanhao CONG,Jingting LIU,Guichao WANG,Xun SUN,Songying CHEN. Study on acoustic characteristics of double hovering bubbles burst on free liquid surface[J]. CIESC Journal, 2021, 72(10): 5123-5131.
水听器 型号 | 水听器精度参数 | |||
---|---|---|---|---|
灵敏度/dB | 误差值/dB | 偏差率/% | 频率范围/Hz | |
TC4013 | -209.9 | -0.2 | 0.095 | 1~1×105 |
表1 实验装置水听器精度不确定性因素分析
Table 1 Analysis of uncertainty factors of hydrophone precision in experimental equipment
水听器 型号 | 水听器精度参数 | |||
---|---|---|---|---|
灵敏度/dB | 误差值/dB | 偏差率/% | 频率范围/Hz | |
TC4013 | -209.9 | -0.2 | 0.095 | 1~1×105 |
图2 气泡产生过程时-频谱图与三个特征时刻的声压时域脉动波形
Fig.2 Time-frequency spectrum of bubble generation process and time-domain pulsation waveform of sound pressure at three characteristic moments
图3 声压时域脉动波形与管口脱离气泡形态同步对应图
Fig.3 The time domain pulsation waveform of sound pressure corresponds synchronously to the shape of the bubble leaving the nozzle
1 | Quinn P, Asher W. Sea salt aerosol production: mechanisms, methods, measurements, and models: a critical review[J]. Bulletin of the American Meteorological Society, 2006, 87(4): 505-507. |
2 | Lhuissier H, Villermaux E. Bursting bubble aerosols[J]. Journal of Fluid Mechanics, 2012, 696: 5-44. |
3 | 马超, 薄涵亮. 自由液面单气泡破裂产生膜液滴空间分布实验[J]. 清华大学学报(自然科学版), 2013, 53(9): 1310-1314. |
Ma C, Bo H L. Experimental observations of the spacial distribution of film drops produced by bursting bubbles on a free liquid surfacesalt[J]. Journal of Tsinghua University ( Science and Technology ), 2013, 53(9): 1310-1314. | |
4 | 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究[J]. 物理学报, 2013, 62(12): 124704. |
Ni B Y, Li S, Zhang A. Jet splitting after bubble breakup at the free surface[J]. Acta Physica Sinica, 2013, 62(12): 124704. | |
5 | Zawala J, Dorbolo S, Terwagne D, et al. Bouncing bubble on a liquid/gas interface resting or vibrating[J]. Soft Matter, 2011, 7(14): 6719. |
6 | Zawala J, Malysa K. Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[J]. Langmuir, 2011, 27(6): 2250-2257. |
7 | Malysa K, Krasowska M, Krzan M. Influence of surface active substances on bubble motion and collision with various interfaces[J]. Advances in Colloid and Interface Science, 2005, 114/115: 205-225. |
8 | Kulkarni A A, Joshi J B. Bubble formation and bubble rise velocity in gas-liquid systems: a review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931. |
9 | Woodcock A H, Kientzler C F, Arons A B, et al. Giant condensation nuclei from bursting bubbles[J]. Nature, 1953, 172(4390): 1144-1145. |
10 | Israelachvili J N. Intermolecular and Surface Forces[M]. San Diego: Academic Press, 1991. |
11 | Poulain S, Villermaux E, Bourouiba L. Ageing and burst of surface bubbles[J]. Journal of Fluid Mechanics, 2018, 851: 636-671. |
12 | Blanchard D C, Syzdek L D. Film drop production as a function of bubble size[J]. Journal of Geophysical Research: Oceans, 1988, 93(C4): 3649-3654. |
13 | Boulton-Stone J M, Blake J R. Gas bubbles bursting at a free surface[J]. Journal of Fluid Mechanics, 1993, 254: 437-466. |
14 | Duchemin L, Popinet S, Josserand C, et al. Jet formation in bubbles bursting at a free surface[J]. Physics of Fluids, 2002, 14(9): 3000-3008. |
15 | Zeff B W, Kleber B, Fineberg J, et al. Singularity dynamics in curvature collapse and jet eruption on a fluid surface[J]. Nature, 2000, 403(6768): 401-404. |
16 | Brenner M P. Jets from a singular surface[J]. Nature, 2000, 403(6768): 377-378. |
17 | Deike L, Ghabache E, Liger-Belair G, et al. Dynamics of jets produced by bursting bubbles[J]. Physical Review Fluids, 2018, 3: 013603. |
18 | Walls P L L, Henaux L, Bird J C. Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production[J]. Physical Review E, 2015, 92(2): 021002. |
19 | MacIntyre F. Flow patterns in breaking bubbles[J]. Journal of Geophysical Research, 1972, 77(27): 5211-5228. |
20 | Nikolov A, Wasan D. Air bubble bursting phenomenon at the air-water interface monitored by the piezoelectric-acoustic method[J]. Advances in Colloid and Interface Science, 2019, 272: 101998. |
21 | 虞想, 谷海峰, 陈皞, 等. 自由液面处气泡破裂行为测量方法的综述[C]//中国核学会2019年学术年会. 包头, 2019. |
Yu X, Gu H F, Chen H, et al. Measurement method of the bubble rupture behavior at free liquid surface: a review[C] // China Nuclear Science Annual Conference 2019. Baotou, 2019. | |
22 | 顾兆峰, 刘怀山, 张志珣. 浅层气逸出到海水中的气泡声学探测方法[J]. 海洋地质与第四纪地质, 2008, 28(2): 129-135. |
Gu Z F, Liu H S, Zhang Z X. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 129-135. | |
23 | 胡东芳, 韩国栋, 黄正梁, 等. 基于声发射信号递归分析的气固流化床流型转变[J]. 化工学报, 2017, 68(2): 612-620. |
Hu D F, Han G D, Huang Z L, et al. Characterization of flow regime transition in gas-solid fluidized bed by recurrence quantification analysis of acoustic emission signals[J]. CIESC Journal, 2017, 68(2): 612-620. | |
24 | 王鑫, 李美慧, 李晓磊, 等. 喷嘴释放单气泡的声发射特性[J]. 化工学报, 2017, 68(5): 1794-1802. |
Wang X, Li M H, Li X L, et al. Acoustic emission characteristics of single nozzled bubble [J]. CIESC Journal, 2017, 68(5): 1794-1802. | |
25 | 王鑫, 李晓磊, 李美慧, 等. 基于聚类方法的运动气泡声发射信号分析[J]. 化工学报, 2018, 69(7): 2964-2971. |
Wang X, Li X L, Li M H, et al. Analyze acoustic emission signals from moving bubbles by clustering method[J]. CIESC Journal, 2018, 69(7): 2964-2971. | |
26 | Minnaert M. On musical air-bubbles and the sounds of running water[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 16(104): 235-248. |
27 | Strasberg M. Gas bubbles as sources of sound in liquids[J]. The Journal of the Acoustical Society of America, 1956, 28(1): 20-26. |
28 | Lamb H. Hydrodynamics [M]. 6th ed. Cambridge University Press, 1932. |
29 | Longuet-Higgins M S. Monopole emission of sound by asymmetric bubble oscillations(1): Normal modes[J]. Journal of Fluid Mechanics, 1989, 201: 525. |
30 | Longuet-Higgins M S. An analytic model of sound production by raindrops[J]. Journal of Fluid Mechanics, 1990, 214: 395. |
31 | Divoux T, Vidal V, Melo F, et al. Acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid[J]. Physical Review E, 2008, 77: 056310. |
32 | Yoon S W, Crum L A, Prosperetti A, et al. An investigation of the collective oscillations of a bubble cloud[J]. The Journal of the Acoustical Society of America, 1991, 89(2): 700-706. |
33 | 邓巍, 程文, 程文娟, 等. 基于频谱分析法研究气泡羽流的不稳定规律[J]. 西北大学学报(自然科学版), 2010, 40(6): 1101-1105. |
Deng W, Cheng W, Cheng W J, et al. Studies on the unstable law of Bubble plume based on spectral analysis method of anomaly[J]. Journal of Northwest University (Natural Science Edition), 2010, 40(6): 1101-1105. | |
34 | Shima A. The natural frequencies of two spherical bubbles oscillating in water[J]. Journal of Basic Engineering, 1971, 93(3): 426-431. |
35 | Manasseh R, Nikolovska A, Ooi A, et al. Anisotropy in the sound field generated by a bubble chain[J]. Journal of Sound and Vibration, 2004, 278(4/5): 807-823. |
36 | Roshid M M, Manasseh R. Extraction of bubble size and number data from an acoustically-excited bubble chain[J]. The Journal of the Acoustical Society of America, 2020, 147(2): 921. |
37 | Manasseh R, LaFontaine R F, Davy J, et al. Passive acoustic bubble sizing in sparged systems[J]. Experiments in Fluids, 2001, 30(6): 672-682. |
38 | 刘竞婷. 水下气体射流与气泡流声特性的数值模拟与实验研究[D]. 杭州: 浙江大学, 2018. |
Liu J T. Numerical and experimental study on the acoustic characteristics of underwater gas jet and bubble flow[D]. Hangzhou: Zhejiang University, 2018. | |
39 | Wang S P, Duan W Y, Wang Q X. The bursting of a toroidal bubble at a free surface[J]. Ocean Engineering, 2015, 109: 611-622. |
40 | 叶曦, 初文华, 陈林, 等. 近自由液面气泡与冲击波的相互作用[J]. 中国舰船研究, 2017, 12(5): 90-96. |
Ye X, Chu W H, Chen L, et al. Interaction between bubble near free surface and shock wave [J]. Chinese Journal of Ship Research, 2017, 12(5): 90-96. | |
41 | 马超, 薄涵亮. 气泡破裂产生膜液滴现象可视化实验研究[J]. 原子能科学技术, 2012, 46(S1): 231-235. |
Ma C, Bo H L. Visualization study of film drops produced by bubble bursting[J]. Atomic Energy Science and Technology, 2012, 46(S1): 231-235. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[4] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[5] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[6] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[7] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[8] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[9] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[10] | 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869. |
[11] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[12] | 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911. |
[13] | 闫美月, 邓坚, 潘良明, 马在勇, 李想, 邓杰文, 何清澈. 基于流量振荡的窄矩形通道内临界热通量机理模型[J]. 化工学报, 2022, 73(7): 2962-2970. |
[14] | 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562. |
[15] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||