化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2962-2970.doi: 10.11949/0438-1157.20220178

• 流体力学与传递现象 • 上一篇    下一篇

基于流量振荡的窄矩形通道内临界热通量机理模型

闫美月1(),邓坚2,潘良明1(),马在勇1,李想1,邓杰文1,何清澈1   

  1. 1.重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400044
    2.中国核动力研究设计院反应堆系统设计技术;重点实验室,四川 成都 610041
  • 收稿日期:2022-02-07 修回日期:2022-04-18 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 潘良明 E-mail:yanmeiyue@cqu.edu.cn;cneng@cqu.edu.cn
  • 作者简介:闫美月(1993—),女,博士研究生, yanmeiyue@cqu.edu.cn
  • 基金资助:
    国家重点研发计划项目(02120023710003);重庆市研究生科研创新项目(CYB21023)

Mechanism model of critical heat flux in narrow rectangular channel based on flow oscillations

Meiyue YAN1(),Jian DENG2,Liangming PAN1(),Zaiyong MA1,Xiang LI1,Jiewen DENG1,Qingche HE1   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
    2.Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041, Sichuan, China
  • Received:2022-02-07 Revised:2022-04-18 Published:2022-07-05 Online:2022-08-01
  • Contact: Liangming PAN E-mail:yanmeiyue@cqu.edu.cn;cneng@cqu.edu.cn

摘要:

设备最大运行功率受临界热通量(CHF)限制,而流量振荡会导致沸腾危机早发,此时的临界热通量称为PM-CHF。为了研究流量振荡条件下窄矩形通道内的临界热通量,进行单侧加热窄矩形通道内竖直向上流动条件下沸腾危机可视化实验,实验工质为去离子水,质量流速范围为350~2000 kg/(m2·s),窄缝宽度范围为1~5 mm,系统压力范围为1~4 MPa。结果显示,在窄矩形通道中CHF随质量流速的增加而线性增加。当流速较小时会发生流量振荡,振荡周期约为0.1 s。流量振荡继而导致沸腾危机早发,其流型表现为弹状流-搅混流。此外,针对本实验观察到的流量振荡和窄矩形通道内气泡动力学特性,从流量振荡的角度进行理论分析与推导,建立窄矩形通道内由于流动失稳引起的PM-CHF机理模型,预测误差在30%以内。

关键词: 窄矩形通道, PM-CHF, 两相流, 流域, 气泡

Abstract:

The maximum operating power of the device is limited by the critical heat flux (CHF), however, the flow oscillation can cause premature critical heat flux (called PM-CHF) and reduce the stable operating range. In order to study the critical heat flux in a narrow rectangular channel under flow oscillation conditions, this paper conducted experiments to visualize the boiling crisis in a narrow rectangular channel under vertical upward flow condition with deionized water as the working medium, with mass flux range of 350—2000 kg/(m2·s), narrow gap size range of 1—5 mm, and system pressure range of 1—4 MPa. The results show that CHF increases linearly with increasing mass flow rate in the narrow rectangular channel. The flow oscillation occurs when the mass flux is small, and the oscillation period is about 0.1 s. The flow oscillation leads to the early onset of boiling crisis, during which the flow pattern is slug-churn flow. Based on the flow oscillation and the bubble dynamics characteristics in the narrow rectangular channel, the theoretical analysis and derivation are carried out from the perspective of flow oscillation. In results, a PM-CHF mechanism model is established, and the error is within 30%.

Key words: narrow rectangular channel, PM-CHF, two-phase flow, flow regime, bubble

中图分类号: 

  • TL 334

图1

实验回路示意图"

图2

可视化部分示意图"

图3

热电偶布置图"

表1

实验参数工况"

参数工况
实验压力p/MPa1~4
窄缝宽度ε/mm1~5
加热长度 L/mm600
质量流速G/(kg/(m2·s))350~2000
入口过冷度ΔTin,sub/K60~120
加热方式单面加热
加热材料不锈钢
流向向上流动
工质去离子水

图4

质量流速对CHF影响"

图5

流动不稳定性条件下CHF发生时流型变化"

图6

流量振荡条件下CHF发生时流量和温度变化"

表2

不稳定性模型"

现有模型具体项目
Helmholtz不稳定性[25-26]研究对象:下层流体密度高于上层流体密度,两流体交界面均与交界面平行,但速度不同,当两者相对速度超过临界值时,发生Helmholtz不稳定性
CHF机理:加热壁面上小气泡聚合形成大气泡,大气泡底部的微液层因蒸发而完全耗尽时发生沸腾危机,大气泡长度取决于Helmholtz不稳定性
Taylor不稳定性[25]研究对象:上层流体密度高于下层流体密度,讨论两流体受到垂直交界面的扰动时引起的不稳定现象
CHF机理:在池式沸腾中,临界热通量为以最危险波长为直径的气泡的蒸发热通量

图7

微液层蒸干模型预测值与本实验值的对比情况"

图8

CHF发生时气泡行为及热通量分布示意图"

表3

汽化核心密度预测关系式"

Ref.CorrelationRanges
[31]Na=210ΔTw1.8
[32]Na=0.34(1-cosθ)ΔTw2.0??????ΔTw,ONB<ΔTw<15?KNa=3.4×10-5(1-cosθ)ΔTw5.3???????ΔTw15?K

G: 124—886 kg/(m2·s)

ΔTin,sub: 6.6—52.5 K

[33]Na=3.1×10-7ΔTw8.19595

p: 0.1—0.5 MPa

G: 400—1600 kg/(m2·s)

ΔTin,sub: 20—60 K

图9

模型计算值与实验值对比"

1 潘良明. 核反应堆热工水力学基础[M]. 重庆: 重庆大学出版社, 2020.
Pan L M. Thermal Hydraulic Fundamentals of Nuclear Reactors[M]. Chongqing: Chongqing University Press, 2020.
2 Yan M Y, Ma Z Y, Pan L M, et al. An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel[J]. Progress in Nuclear Energy, 2021, 140: 103901.
3 Kim H, Moon J, Hong D J, et al. Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning[J]. Nuclear Engineering and Technology, 2021, 53(6): 1796-1809.
4 Boure J A, Bergles A E, Tong L S. Review of two-phase flow instability[J]. Nuclear Engineering and Design, 1973, 25(2): 165-192.
5 Mishima K, Nishihara H. The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels[J]. Nuclear Engineering and Design, 1985, 86(2): 165-181.
6 Oudah S K. Experimental investigation of single and two-phase heat transfer performance in microchannels with surface modifications and multiple inlet [D]. South Carolina: University of South Carolina, 2021.
7 Qu W L, Mudawar I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2737-2753.
8 Lin Y Q, Gao P Z, Chen X B, et al. Experimental investigation on instability characteristics of loss of heat sink accident in a natural circulation system[J]. Annals of Nuclear Energy, 2021, 155: 108143.
9 Fan Y F, Hassan I. Effect of inlet restriction on flow boiling heat transfer in a horizontal microtube[J]. Journal of Heat Transfer, 2013, 135(2): 1-9.
10 Maulbetsch J S. A study of system-induced instabilities in forced-convection flows with subcooled boiling[D]. Cambridge: Massachusetts Institute of Technology, 1965.
11 Kaya A, Özdemir M R, Keskinöz M, et al. The effects of inlet restriction and tube size on boiling instabilities and detection of resulting premature critical heat flux in microtubes using data analysis[J]. Applied Thermal Engineering, 2014, 65(1/2): 575-587.
12 Haas C, Meyer L, Schulenberg T. Flow instability and critical heat flux for flow boiling of water in a vertical annulus at low pressure[C]//Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, Hawaii, USA, 2011.
13 Stoddard R M, Blasick A M, Ghiaasiaan S M, et al. Onset of flow instability and critical heat flux in thin horizontal annuli[J]. Experimental Thermal and Fluid Science, 2002, 26(1): 1-14.
14 Lee J, Jo D, Chae H, et al. The characteristics of premature and stable critical heat flux for downward flow boiling at low pressure in a narrow rectangular channel[J]. Experimental Thermal and Fluid Science, 2015, 69: 86-98.
15 Zhao D W, Su G H, Liang Z H, et al. Experimental research on transient critical heat flux in vertical tube under oscillatory flow condition[J]. International Journal of Multiphase Flow, 2011, 37(9): 1235-1244.
16 Ghione A, Noel B, Vinai P, et al. Criteria for onset of flow instability in heated vertical narrow rectangular channels at low pressure: an assessment study[J]. International Journal of Heat and Mass Transfer, 2017, 105: 464-478.
17 陈娟, 周涛, 齐实, 等. 矩形通道自然循环流动不稳定性实验研究[J]. 核动力工程, 2017, 38(2): 51-55.
Chen J, Zhou T, Qi S, et al. Experimental study of natural circulation flow instability in rectangular channels[J]. Nuclear Power Engineering, 2017, 38(2): 51-55.
18 Sudo Y, Miyata K, Ikawa H, et al. Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel[J]. Journal of Nuclear Science and Technology, 1985, 22(8): 604-618.
19 于德海. 受限流道内CHF发生过程中的流动行为分析[D]. 哈尔滨: 哈尔滨工程大学, 2020.
Yu D H. Analysis of CHF flow behavior in confined flow channels[D]. Harbin: Harbin Engineering University, 2020.
20 何海沙. 矩形窄通道内PM-CHF特性实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
He H S. Experimental study on PM-CHF in a narrow rectangular channel[D]. Harbin: Harbin Engineering University, 2019.
21 盛程, 周涛, 张蕾, 等. 窄矩形通道自然循环流动停滞与临界热流密度研究[J]. 核科学与工程, 2013, 33(1): 65-75.
Sheng C, Zhou T, Zhang L, et al. Study on natural circulation flow stagnation and critical heat flux in narrow rectangular channel[J]. Nuclear Science and Engineering, 2013, 33(1): 65-75.
22 Zhou J C, Ye T Z, Zhang D L, et al. Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel[J]. Nuclear Engineering and Technology, 2021, 53(1): 61-68.
23 Zhang K, Zhu Z M, Shang B J, et al. Experimental investigation on flow regimes and transitions of steam-water two-phase flow in narrow rectangular horizontal channels[J]. Progress in Nuclear Energy, 2021, 131: 103601.
24 Yan M Y, Ren T T, Chen K L, et al. Visualized experiment of bubble behaviors in a vertical narrow rectangular channel under natural circulation condition[J]. Frontiers in Energy Research, 2018, 6: 105.
25 Ishii M, Hibiki T. Thermos-fluid Dynamics of Two-phase Flow[M]. 2nd ed. Berlin: Springer, 2010: 48-52.
26 Haramura Y, Katto Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids[J]. International Journal of Heat and Mass Transfer, 1983, 26(3): 389-399.
27 刘阳. 水电解中磁流体对气泡行为及两相流动特性的影响[D]. 重庆:重庆大学, 2021.
Liu Y. Influence of magnetic fluid on bubble behavior and two-phase flow characteristics in water electrolysis [D]. Chongqing: Chongqing University, 2021.
28 Yan M Y, He Q C, Ma Z Y, et al. Experimental investigation and a mechanical model of critical heat flux in a narrow rectangular channel[J]. Experimental Thermal and Fluid Science, 2021, 128: 110432.
29 李少丹. 海洋条件下局部气泡行为及沸腾换热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
Li S D. Study of local bubble behavior and boiling heat transfer characteristics under ocean condition[D]. Harbin: Harbin Engineering University, 2015.
30 Luitjens J, Wu Q, Greenwood S, et al. Mechanistic CHF modeling for natural circulation applications in SMR[J]. Nuclear Engineering and Design, 2016, 310: 604-611.
31 Del Valle V H, Kenning D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1907-1920.
32 Li S D, Tan S C, Xu C, et al. An experimental study of bubble sliding characteristics in narrow channel[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 89-99.
33 闫美月. 竖直窄矩形通道内壁面热流分配模型的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
Yan M Y. Experimental study of wall heat flux partitioning model in vertical rectangular narrow channel[D]. Harbin: Harbin Engineering University, 2019.
[1] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[2] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[3] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[4] 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518.
[5] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[6] 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
[7] 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560.
[8] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[9] 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720.
[10] 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706.
[11] 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558.
[12] 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427.
[13] 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162.
[14] 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869.
[15] 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!