化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 512-519.doi: 10.11949/0438-1157.20201516

• 能源和环境工程 • 上一篇    下一篇

板式换热器及其热力系统的运行特性和高级分析

卢沛(),罗向龙(),陈健勇,杨智,梁颖宗,陈颖   

  1. 广东工业大学材料与能源学院,广东 广州 510006
  • 收稿日期:2020-10-29 修回日期:2021-01-22 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 罗向龙 E-mail:513113516@qq.com;lxl-dte@gdut.edu.cn
  • 作者简介:卢沛(1996—),男,硕士研究生,513113516@qq.com
  • 基金资助:
    国家自然科学基金项目(51876043)

Operating characteristics and advanced exergy analysis of plate heat exchangers and their thermal system

LU Pei(),LUO Xianglong(),CHEN Jianyong,YANG Zhi,LIANG Yingzong,CHEN Ying   

  1. Institute of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2020-10-29 Revised:2021-01-22 Published:2021-06-20 Online:2021-06-20
  • Contact: LUO Xianglong E-mail:513113516@qq.com;lxl-dte@gdut.edu.cn

摘要:

针对不同换热设备组合之间以及换热设备在系统中的分布情况进行了研究,建立了高级分析模型,将换热设备与系统的损进一步分割成不可避免性部分和可避免性部分,计算相应的损失和效率,确定换热设备与系统中能量损失的主要部位,并在有机朗肯循环(organic Rankine cycle,ORC)系统试验台中进行验证,为换热设备及其热力系统的运行优化提供科学依据。结果表明,不同的换热面积对换热设备的能效有着非常大的影响,同时常规分析和高级分析提出了不同的系统优化次序。高级分析表明,蒸发器可避免损占蒸发器损的41.2%~60.0%,冷凝器可避免损占冷凝器总损最高可达91%~97%,整个ORC系统有52.5%~66.3%的损可以避免,有很大的改造潜力,且发现不合理设计的管道也会影响ORC系统性能。

关键词: 损失, 效率, 高级分析, 有机工质, 朗肯循环

Abstract:

The exergy distribution of different heat exchanger combinations and the heat exchanger in the thermal system were studied, and an advanced exergy analysis model was established to further divide the exergy destruction into unavoidable parts and avoidable parts. The main energy loss in the heat exchanger and thermal system were determined by the calculation of the corresponding exergy destruction and exergy efficiency. It was verified in the organic Rankine cycle (ORC) system text rig, which provided a scientific basis for the optimization of the heat exchangers and thermal system operation. The results showed that different area of heat exchanger had a great impact on the energy efficiency of heat exchanger. And the traditional exergy analysis and the advanced exergy analysis provided different optimization sequences. The advanced exergy analysis showed that the avoidable exergy destruction in evaporator accounted for 41.2%—60.0% while the condenser could avoid 91%—97%. The ORC system had 52.5%—66.3% exergy destruction that could be avoided, which had great potential for optimization. In addition, it was found that unreasonable design of the pipeline would also affect the ORC system performance.

Key words: exergy destruction, exergy efficiency, advanced exergy analysis, organic working fluid, Rankine cycle

中图分类号: 

  • TK 121

图1

换热设备及其热力系统测试台"

表1

试验测试台的测量量、计算量以及不确定度"

参数型号范围误差
TPt-100(INOR-66RKS)-200~800℃±0.1℃
p压力传感器(PTX5072)0~3.5 MPa, 0~5 MPa±0.2%
mrCoriolis流量计(OPTIMASS 1330C)0~400 kg/h±1.0%
mv,h转子流量计(H250-RR-M40)0.400~4 m3/h±1.0%
mv,c电磁流量计(AXF025G)>0.060 m3/h±0.2%
Wexp测功仪(DW300KC)±0.8%
Wpum功率监视器(8967B)±1.0%
QevaQeva=f(h1, h6, mr)±1.3%
WnetWnet=f(Wexp, Wpum)±1.0%
ηthηth=f(Qeva, Wexp, Wpum)±2.2%

图2

ORC系统T-H图"

表2

分析中的实际循环和不可避免循环"

系统部件参数实际循环不可避免损循环
工质泵pumηpum0.95
管路p-e?pp-e0.006 MPa0.001 MPa
蒸发器eva?Teva1.416℃0.5℃
管路e-e?pe-e0.062 MPa0.001 MPa
膨胀机expηexp0.630.95
管路e-c?pe-c0.182 MPa0.001 MPa
冷凝器con?Tcon0.745℃0.5℃
管路c-p?pc-p0.014 MPa0.001 MPa

表3

热源130℃-冷源20℃的运行工况下不同换热器组合的分析"

换热器组合蒸发器冷凝器
εk/%?Dεk/%?D
蒸发器1-冷凝器166.783.17739.331.264
蒸发器1-冷凝器267.243.08338.171.224
蒸发器1-冷凝器366.373.18836.761.258
蒸发器2-冷凝器166.373.29238.021.290
蒸发器2-冷凝器266.033.27636.901.257
蒸发器2-冷凝器367.553.13535.711.304

表4

ORC系统的运行工况"

参数工况变化
有机工质R245fa
热源进口温度/℃120,130,140
冷源进口温度/℃15,20,25
热源流量/(L/h)1800
冷源流量/(L/h)1350
膨胀机转速/(r/min)1500
工质流量/(kg/s)0.14

表5

ORC系统的试验工况组别"

工况组别冷源进口温度/℃热源进口温度/℃
115120
225120
320130
415140
525140

表6

常规分析结果"

工况组别部件

效率/

%

损/

kW

ηth/%

系统

效率/%

实际不可避免
1蒸发器63.993.0294.4312.6519.22
冷凝器5.371.186
工质泵20.780.371
膨胀机65.590.896
2蒸发器67.952.6144.5511.2019.15
冷凝器55.950.850
工质泵20.170.378
膨胀机65.820.858
3蒸发器66.033.2764.5413.0218.60
冷凝器36.901.257
工质泵22.620.376
膨胀机65.600.988
4蒸发器62.944.1434.5414.8717.97
冷凝器14.221.710
工质泵23.470.377
膨胀机67.161.026
5蒸发器65.243.6964.7713.2417.77
冷凝器53.061.274
工质泵22.150.388
膨胀机68.510.909

图3

ORC系统各组件的高级分析"

1 陈雷. 化工设备换热器常见问题及处理措施[J]. 化工管理, 2019, (4): 139.
Chen L. Common problems and treatment measures of heat exchangers for chemical equipment [J]. Chemical Enterprise Management, 2019, (4): 139.
2 Lecompte S, Huisseune H, van den Broek M, et al. Part load based thermo-economic optimization of the organic Rankine cycle (ORC) applied to a combined heat and power (CHP) system [J]. Applied Energy, 2013, 111: 871-881.
3 杨汉强, 张晓冬, 赵宗昌. TFE/NMP吸收式制冷机的分析[J]. 化工学报, 2002, 53(4): 384-389.
Yang H Q, Zhang X D, Zhao Z C. Exergy analysis of TFE/NMP absorption refrigerator [J]. Journal of Chemical Industry and Engineering (China), 2002, 53(4): 384-389.
4 熊永强, 华贲. 利用液化天然气冷能捕集CO2的动力系统的集成[J]. 化工学报, 2010, 61(12): 3142-3148.
Xiong Y Q, Hua B. Integration of energy power system in CO2 capture by utilization of cold energy from liquefied natural gas [J]. CIESC Journal, 2010, 61(12): 3142-3148.
5 Li J, Duan Y Y, Yang Z, et al. Exergy analysis of novel dual-pressure evaporation organic Rankine cycle using zeotropic mixtures [J]. Energy Conversion and Management, 2019, 195: 760-769.
6 Chen J Y, Zhu K D, Luo X L, et al. Application of liquid-separation condensation to plate heat exchanger: comparative studies [J]. Applied Thermal Engineering, 2019, 157: 113739.
7 Devecioğlu A G, Oruç V. Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a [J]. Energy, 2018, 155: 105-116.
8 Mancini R, Zühlsdorf B, Aute V, et al. Performance of heat pumps using pure and mixed refrigerants with maldistribution effects in plate heat exchanger evaporators [J]. International Journal of Refrigeration, 2019, 104: 390-403.
9 荣杨一鸣, 吴巧仙, 周霞, 等. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666.
Rong-Yang Y M, Wu Q. X, Zhou X,et al. Research on performance optimization of air compression heat self-utilization in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666.
10 Pandey S D, Nema V K. An experimental investigation of exergy loss reduction in corrugated plate heat exchanger [J]. Energy, 2011, 36(5): 2997-3001.
11 郭春生, 程林, 杜文静. 不同波纹比例新型板式换热器的传热阻力特性及分析[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 163-167.
Guo C S, Cheng L, Du W J. Heat transfer and resistance characteristics and exergy analysis of new-type plate heat exchanges with different corrugation ratios [J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2): 163-167.
12 Chen Q C, Xu J L, Chen H X. A new design method for organic Rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source [J]. Applied Energy, 2012, 98: 562-573.
13 张慧. 板式换热器传递特性研究[J]. 应用能源技术, 2014, (11): 34-37.
Zhang H. A research on the exergy transfer characteristics of the plate heat exchanger [J]. Applied Energy Technology, 2014, (11): 34-37.
14 Doohan R S, Kush P K, Maheshwari G. Exergy based optimization and experimental evaluation of plate fin heat exchanger [J]. Applied Thermal Engineering, 2016, 102: 80-90.
15 王茜, 韩怀志, 李炳熙. 板式换热器波纹通道的流动与传热机理[J]. 化工学报, 2017, 68: 71-82.
Wang Q, Han H Z, Li B X. Flow and heat transfer mechanism of corrugated plate heat exchanger [J]. CIESC Journal, 2017, 68: 71-82.
16 裴刚, 王东玥, 李晶, 等. 有机朗肯循环热电联供系统的试验研究[J]. 化工学报, 2013, 64(6): 1993-2000.
Pei G, Wang D Y, Li J, et al. Organic Rankine cycle combined heat and power system [J]. CIESC Journal, 2013, 64(6): 1993-2000.
17 王菲, 沈胜强. 新型太阳能双喷射制冷系统的可用能效率分析[J]. 化工学报, 2009, 60(3): 553-559.
Wang F, Shen S Q. Exergy analysis of novel solar bi-ejector refrigeration system [J]. CIESC Journal, 2009, 60(3): 553-559.
18 Chen J Y, Zheng X S, Guo G Q, et al. A flexible and multi-functional organic Rankine cycle system: preliminary experimental study and advanced exergy analysis [J]. Energy Conversion and Management, 2019, 187: 339-355.
19 Morosuk T, Tsatsaronis G. Advanced exergetic evaluation of refrigeration machines using different working fluids [J]. Energy, 2009, 34(12): 2248-2258.
20 Chen J Y, Havtun H, Palm B. Conventional and advanced exergy analysis of an ejector refrigeration system [J]. Applied Energy, 2015, 144: 139-151.
21 Galindo J, Ruiz S, Dolz V, et al. Advanced exergy analysis for a bottoming organic Rankine cycle coupled to an internal combustion engine [J]. Energy Conversion and Management, 2016, 126: 217-227.
22 陈玉婷, 徐燕燕, 王磊, 等. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
Chen Y T, Xu Y Y, Wang L, et al. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
23 郑晓生, 罗俊伟, 卢沛, 等. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统试验研究[J]. 广东工业大学学报, 2020, 37(3): 114-120.
Zheng X S, Luo J W, Lu P, et al. An experimental study of zeotropic-mixture organic Rankine cycle system utilizing R1234ze(E)/R245fa [J]. Journal of Guangdong University of Technology, 2020, 37(3): 114-120.
24 陈超男, 罗向龙, 杨智, 等. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381.
Chen C N, Luo X L, Yang Z, et al. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment [J]. CIESC Journal, 2020, 71(5): 2373-2381.
[1] 梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502.
[2] 李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
[3] 曹健, 冯新, 吉晓燕, 陆小华. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787.
[4] 侯勇俊, 祝敬涛, 李华川, 吴先进, 蒋锐. 均衡运动旋转振动筛DEM数值模拟[J]. 化工学报, 2021, 72(5): 2706-2717.
[5] 梁坤峰, 冯长振, 王莫然, 董彬, 王林, 刘瑞见. 非共沸工质换热匹配特性影响热泵性能的高级分析[J]. 化工学报, 2021, 72(4): 2038-2046.
[6] 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122.
[7] 仪桐辛, 张磊, 都健. 吸收式热泵循环的新型有机工质对计算机辅助分子设计[J]. 化工学报, 2021, 72(3): 1457-1464.
[8] 于程远, 吴金奎, 周利, 吉旭, 戴一阳, 党亚固. 基于深度学习预测有机光伏电池能量转换效率[J]. 化工学报, 2021, 72(3): 1487-1495.
[9] 荣杨一鸣, 吴巧仙, 周霞, 方松, 王凯, 邱利民, 植晓琴. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666.
[10] 郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551.
[11] 贺鹏程, 庄莉, 胡亮, 刘刚, 王瑞琪, 包亚强. 板翅式换热器压力特性工程计算方法[J]. 化工学报, 2020, 71(S1): 172-178.
[12] 许晓佳, 吴永真, 朱为宏. CsPbX3钙钛矿材料与光伏器件稳定性强化研究进展[J]. 化工学报, 2020, 71(9): 3933-3949.
[13] 黄健, 赵众. 延迟焦化加热炉热效率的机理建模与实时估计应用[J]. 化工学报, 2020, 71(7): 3140-3150.
[14] 姚春, 黄龙龙, 常江伟, 丁一旺, 于畅, 邱介山. 碳分子筛的优化设计及其I3-还原性能研究[J]. 化工学报, 2020, 71(6): 2696-2704.
[15] 叶小琴, 闻沚玥, 沈王强, 卢兴. 富勒烯材料在钙钛矿太阳能电池中的应用[J]. 化工学报, 2020, 71(6): 2510-2529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[2] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[3] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[4] 周立芳, 邵之江. 具有软硬约束的混合权系数最小二乘稳定预测控制算法[J]. CIESC Journal, 2003, 11(5): 565 -570 .
[5] 曹维良, 王泽, 张敬畅. 影响纳米碳酸钙制备过程的因素分析[J]. CIESC Journal, 2003, 11(5): 589 -593 .
[6] 杨宁, 王维, 葛蔚, 李静海. 垂直并流向上气固两相流中流动结构的分析及曳力系数的计算[J]. CIESC Journal, 2003, 11(1): 79 -84 .
[7] 袁俊杰, 周树学, 廖建和, 武利民. 有机无机杂化物作乳化剂的苯丙乳液制备及其性能表征[J]. CIESC Journal, 2003, 11(4): 483 -488 .
[8] 任杰, 刘艳, 唐小真. 聚合物基有机-无机纳米复合材料的制备、性能及应用[J]. CIESC Journal, 2003, 11(3): 326 -333 .
[9] 梁军, 钱积新. 多变量统计过程监控:进展及其在化学工业的应用[J]. CIESC Journal, 2003, 11(2): 191 -203 .
[10] 刘晓侠, 林建平, 秦钢, 岑沛霖. 大肠杆菌中表达来源于Agrobacterium radibacter的新hamA基因以生产5-氨基乙酰丙醇[J]. CIESC Journal, 2005, 13(4): 522 -528 .