化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4931-4940.doi: 10.11949/0438-1157.20210001

• 能源和环境工程 • 上一篇    下一篇

响应面法优化餐饮废水混凝工艺研究

贾艳萍1(),单晓倩1,宋祥飞1,佟泽为2,张健1,张兰河1()   

  1. 1.东北电力大学化学工程学院,吉林省 吉林市 132012
    2.长春工程学院能源动力工程学院,吉林 长春 130012
  • 收稿日期:2021-01-03 修回日期:2021-04-08 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 张兰河 E-mail:jiayanping1111@sina.com;zhanglanhe@163.com
  • 作者简介:贾艳萍(1973—),女,博士,教授,jiayanping1111@sina.com
  • 基金资助:
    国家自然科学基金项目(52070035);吉林省科技发展计划项目(20180201016SF)

Optimization of coagulation process of catering wastewater by response surface methodology

Yanping JIA1(),Xiaoqian SHAN1,Xiangfei SONG1,Zewei TONG2,Jian ZHANG1,Lanhe ZHANG1()   

  1. 1.School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
    2.School of Energy and Power Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China
  • Received:2021-01-03 Revised:2021-04-08 Published:2021-09-05 Online:2021-09-05
  • Contact: Lanhe ZHANG E-mail:jiayanping1111@sina.com;zhanglanhe@163.com

摘要:

餐饮废水是一种污染严重、成分复杂的高浓度有机废水。为了降低生化处理的负荷,采用混凝沉淀工艺对餐饮废水进行预处理,利用响应面法优化混凝工艺条件。通过扫描电子显微镜(SEM)、X射线能谱(EDS)及X射线衍射(XRD)分析絮体组成结构的变化,采用三维荧光光谱对比餐饮废水处理前后有机物成分的变化,探究餐饮废水的降解机理。结果表明:在初始pH 7.75,FeCl3投加量为101.84 mg/L,搅拌及沉降时间分别为42.05 s和25.99 min的条件下,响应面法预测COD去除率为45.34%,与实测值仅相差0.02%(<2%)。由SEM、EDS及XRD分析可知,混凝前原水的悬浮物表面相对平整,混凝后的沉淀物颗粒表面粗糙,且表面呈空间网状结构;混凝前后废水的絮体主要含有C、Cl、Na、O、N、P等元素;混凝后的絮体表面附着铁的氢氧化物。通过三维荧光分析可知,混凝沉淀工艺能有效地去除可溶性微生物副产物和腐殖酸类物质。

关键词: 响应面, 餐饮废水, 混凝沉淀, 模型, 降解

Abstract:

Catering wastewater is a kind of high-concentration organic wastewater with severe pollution and complex components. In order to reduce the load of biochemical treatment, this study uses coagulation sedimentation process to pretreat catering wastewater, and uses response surface methodology to optimize the coagulation process conditions. Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to analyze the changes of composition and structure of flocs. Three-dimensional fluorescence spectrum were used to compare the changes of organic matter before and after catering wastewater treatment, and the degradation mechanism of catering wastewater was explored. The results showed that when the initial pH was 7.75, FeCl3 dosage was 101.84 mg/L, stirring time was 42.05 s and sedimentation time was 25.99 min, removal efficiency of COD predicted was 45.34% by using the response surface method. The deviation was only 0.02%(<2%) compared with the measured value. According to SEM, EDS and XRD analysis, the surface of suspended solids in the raw water before coagulation was relatively flat. The surface of the precipitate particles after coagulation was rough, and the surface of floc had obvious spatial network structure. The flocs mainly contained C, Cl, Na, O, N, P and other elements before and after the coagulation and the surface of flocs adhered to iron hydroxide after the coagulation. The analysis of three-dimensional fluorescence showed that the coagulation sedimentation process could effectively remove soluble microbial by-products and humic acids.

Key words: response surface, catering wastewater, coagulation sedimentation, model, degradation

中图分类号: 

  • X 523

表1

餐饮废水水质指标"

废水COD/(mg/L)BOD/(mg/L)TN/(mg/L)浊度/NTUTP/(mg/L)动植物油/(mg/L)pH气味
处理前废水1715±200549±20030.15±5300.1±502.66±1196±505.01±1酸臭味
预处理后废水1101±200517±20012.86±221.52±502.02±136±157±1少量酸臭味

表2

废水可生化性评价指标"

BOD/COD可生化性
>0.45较好
0.3~0.45可以
0.2~0.3较难
<0.2不宜

表3

响应面实验因素及水平设计"

编码因素单位水平
-101
A初始pH789
BFeCl3投加量mg/L90100110
C搅拌时间s204060
D沉降时间min203040

表4

响应面实验组次设计及实验结果"

序号变量取值COD去除率/%
ABCD
1-10-1041.91
2-101041.08
3101039.92
4-100138.92
50-10135.95
6000045.29
7000044.50
8000044.66
9-1-10035.95
1010-1037.30
111-10037.08
12010132.28
130-1-1036.21
14001-143.39
15001140.44
16000043.91
17000045.36
18010-141.92
19-110039.84
20011038.45
21100136.62
220-10-136.49
230-11038.54
24-100-142.27
25110036.51
26100-138.61
2701-1039.71
2800-1138.29
2900-1-140.69

表5

COD去除率(响应值Y)模型方差分析"

变差来源平方和自由度均方和FP显著性
模型295.001421.0724.98<0.0001极显著
A16.17116.1719.170.0006极显著
B6.0116.017.120.0184显著
C4.9514.955.870.0295显著
D36.3136.3043.03<0.0001极显著
AB4.9714.975.900.0293显著
AC2.9812.983.530.0813不显著
AD0.4610.460.550.4713不显著
BC3.2213.223.820.0709不显著
BD20.70120.7024.540.0002极显著
CD0.07610.0760.0900.7690不显著
A250.96150.9660.41<0.0001极显著
B2158.151158.15187.50<0.0001极显著
C215.84115.8418.750.0007极显著
D251.60151.6061.17<0.0001极显著
残差11.81140.84
失拟项10.36101.042.880.1598不显著
误差1.4440.36
合计306.8128
标准偏差0.92相关系数0.9615
平均值39.73校正决定系数0.9230
变异系数2.31预测相关系数0.7980
压力系数61.98信噪比16.752

图1

实测值与预测值的对比"

图2

COD去除率摄动图"

图3

不同因素对COD去除率影响的响应面三维图"

图4

混凝前后废水悬浮颗粒粒径分布"

图5

混凝剂水解产物与有机物质相互作用"

图6

原水与混凝后固体的SEM-EDS图"

表6

混凝前后沉淀固体表面元素分析"

元素混凝前混凝后
质量分数/%原子分数/%质量分数/%原子分数/%
C50.3065.2726.5143.01
N5.906.606.008.35
O10.5410.3310.8013.15
Na10.737.3114.6312.40
Mg1.140.741.220.98
Si0.670.370.990.69
P0.880.441.000.63
S3.681.802.721.65
Cl13.856.1224.5913.52
K1.370.5510.055.01
Ca1.210.470.630.31
Fe0.870.30

图7

混凝后固体的XRD谱图"

图8

进出水三维荧光光谱图"

1 樊立萍, 苗晓慧. 微生物燃料电池处理餐饮废水及同步发电性能研究[J]. 燃料化学学报, 2014, 42(12): 1506-1512.
Fan L P, Miao X H. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1506-1512.
2 Katam K, Bhattacharyya D. Comparative study on treatment of kitchen wastewater using a mixed microalgal culture and an aerobic bacterial culture: kinetic evaluation and FAME analysis[J]. Environmental Science and Pollution Research, 2018, 25(21): 20732-20742.
3 Dong Y, Safferman S I, Ostahowski J, et al. Enzyme pretreatment of fats, oil and grease from restaurant waste to prolong septic soil treatment system effectiveness[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(1): 55-63.
4 蔡宏镇, 沈忱, 任满年, 等. 环流气浮法处理含油水体工艺[J]. 化工学报, 2015, 66(2): 605-611.
Cai H Z, Shen C, Ren M N, et al. Loop flotation for oil-containing water treatment[J]. CIESC Journal, 2015, 66(2): 605-611.
5 尹艳华, 徐复铭, 赵毅, 等. 膜生物反应器处理餐饮废水的初步研究[J]. 应用基础与工程科学学报, 2005, 13(4): 358-365.
Yin Y H, Xu F M, Zhao Y, et al. The primary study of the membrane bioreactor to treat restaurant wastewater[J]. Journal of Basic Science and Engineering, 2005, 13(4): 358-365.
6 樊立萍, 郑钰姣, 苗晓慧. 阴极液及溶氧对微生物燃料电池性能的影响[J]. 高校化学工程学报, 2016, 30(2): 491-496.
Fan L P, Zheng Y J, Miao X H. Effects of catholyte and dissolved oxygen on microbial fuel cell performance[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 491-496.
7 聂丽君, 钟华文, 周如金, 等. 混凝/厌氧/兼氧-好氧膜生物反应器组合新工艺处理制革废水[J]. 化工学报, 2016, 67(9): 3995-4003.
Nie L J, Zhong H W, Zhou R J, et al. Treatment of tanning wastewater by integrated process consisted of coagulation, anaerobic baffled reactor and anoxic/aerobic-membrane bioreactor[J]. CIESC Journal, 2016, 67(9): 3995-4003.
8 亓秋波, 高宝玉, 鹿时雨, 等. 混凝预处理大豆蛋白废水实验研究[J]. 中国环境科学, 2014, 34(1): 143-149.
Qi Q B, Gao B Y, Lu S Y, et al. Pretreatment of soybean protein wastewater by coagulation[J]. China Environmental Science, 2014, 34(1): 143-149.
9 张兰河, 万洒, 陈子成, 等. 高分子絮凝剂处理高浓度化妆品原料生产废水研究[J]. 化工学报, 2020, 71(8): 3730-3740.
Zhang L H, Wan S, Chen Z C, et al. Treatment of high-strength wastewater generated in cosmetics raw materials production using polymer flocculants[J]. CIESC Journal, 2020, 71(8): 3730-3740.
10 Dotto J, Fagundes-Klen M R, Veit M T, et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208: 656-665.
11 张鹏, 王雨露, 丁文杰, 等. 新型巯基絮凝剂PAM-GSH的合成及除Mn(Ⅱ)性能研究[J]. 化工学报, 2019, 70(5): 1932-1941.
Zhang P, Wang Y L, Ding W J, et al. Synthesis of new sulfhydryl flocculant PAM-GSH and its performance in removing Mn(Ⅱ)[J]. CIESC Journal, 2019, 70(5): 1932-1941.
12 方乘, 杨盛, 吴云, 等. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723.
Fang C, Yang S, Wu Y, et al. Effect of floc surface morphology on membrane pollution prediction[J]. CIESC Journal, 2020, 71(2): 715-723.
13 王永良, 杨晓玲, 董永霞, 等. pH调整剂对含砷酸性废水中氧化Fe(Ⅱ)共沉淀固砷行为的影响[J]. 化工学报, 2019, 70(9): 3511-3516.
Wang Y L, Yang X L, Dong Y X, et al. Effect of pH adjustment on immobilization of arsenic by coprecipitation through oxidizing Fe(Ⅱ) in acidic wastewater containing arsenic[J]. CIESC Journal, 2019, 70(9): 3511-3516.
14 Wang W, Yue Q Y, Li R H, et al. Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 423-430.
15 Kim Y G, Song J B, Yang D G, et al. Purification of chemical mechanical polishing wastewater via superconducting high gradient magnetic separation system with optimal coagulation process[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1-5.
16 刘永旺, 李星, 杨艳玲, 等. 混凝/吸附预处理对超滤膜过滤特性的影响[J]. 北京理工大学学报, 2014, 34(6): 638-643.
Liu Y W, Li X, Yang Y L, et al. Effect of coagulation/adsorption pretreatment on ultrafiltration characteristics[J]. Transactions of Beijing Institute of Technology, 2014, 34(6): 638-643.
17 冯爱辉. 化学混凝-SBR法处理含油废水试验研究[D]. 西安: 长安大学, 2006.
Feng A H. Experimental research on the oily wastewater treatment by chemical coagulation-SBR process[D]. Xi'an: Chang'an University, 2006.
18 杨艳. 煤制油低浓度含油废水处理工艺研究[D]. 包头: 内蒙古科技大学, 2011.
Yang Y. Study on technique for the treatment of coal-to-liquids low denisity oil wastewater[D]. Baotou: Inner Mongolia University of Science & Technology, 2011.
19 Louhichi G, Khouni I, Ghrabi A. Enhanced efficiency of the coagulation/flocculation treatment of vegetable oil refinery wastewater using response surface methodology[C]//Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2018: 223-226.
20 Painmanakul P, Sastaravet P, Lersjintanakarn S, et al. Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by induced air flotation (IAF) process[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 693-702.
21 程华农, 邱娜娜, 岳金彩, 等. 采用响应面法降低湿法氧化脱硫中Na2S2O3生成量[J]. 化工学报, 2020, 71(4): 1762-1771.
Cheng H N, Qiu N N, Yue J C, et al. Reduction of Na2S2O3 production in wet oxidation desulfurization by response surface method[J]. CIESC Journal, 2020, 71(4): 1762-1771.
22 唐海, 沙俊鹏, 欧阳龙, 等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报, 2015, 66(2): 785-792.
Tang H, Sha J P, Ouyang L, et al. Persulfate activated by Fe(Ⅱ) for oxidation and disintegration of excess sludge[J]. CIESC Journal, 2015, 66(2): 785-792.
23 马艳红, 陆江银, 胡子昭, 等. 响应面法优化制备戊烯/辛烯/十二烯共聚物减阻剂[J]. 化工学报, 2017, 68(5): 2195-2203.
Ma Y H, Lu J Y, Hu Z Z, et al. Preparation of 1-pentene/1-octene/1-dodecene terpolymer drag reducer by response surface method[J]. CIESC Journal, 2017, 68(5): 2195-2203.
24 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
Zhu L Y, Wang Y M, Zhou X F. Application of response surface methodology in optimizing electrocatalytic degradation of dye wastewater[J]. CIESC Journal, 2020, 71(3): 1335-1342.
25 李俊. 预处理-SBR法处理餐饮废水的试验研究[D]. 武汉: 武汉科技大学, 2010.
Li J. Study on the restaurant wastewater treatment by combined process of pretreatment -SBR[D]. Wuhan: Wuhan University of Science and Technology, 2010.
26 贾瑞来, 刘吉宝, 魏源送. 基于响应面分析法的微波-过氧化氢-碱预处理污泥水解酸化优化研究[J]. 环境科学学报, 2016, 36(3): 920-931.
Jia R L, Liu J B, Wei Y S. Response surface methodology for the optimization of hydrolysis and acidification of sludge pretreated by the microwave-H2O2-alkaline process[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 920-931.
27 胡甜甜, 赵地顺, 武宇, 等. 醚基功能化离子液体催化合成乙酸正丁酯[J]. 化工学报, 2017, 68(1): 136-145.
Hu T T, Zhao D S, Wu Y, et al. Synthesis of n-butyl acetate by ether-functionalized ionic liquid[J]. CIESC Journal, 2017, 68(1): 136-145.
28 Devi P, Das U, Dalai A K. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems[J]. The Science of the Total Environment, 2016, 571: 643-657.
29 李优平. 钛盐混凝去除无机As(Ⅲ)的实验研究[D]. 西安: 西安建筑科技大学, 2014.
Li Y P. Removal of inorganic As(Ⅲ) by titanium salt coagulation[D]. Xi'an: Xi'an University of Architecture and Technology, 2014.
30 王晓娟, 张兴堂, 蒋晓红, 等. β-FeOOH纳米线的自排列及形成机理研究[J]. 高等学校化学学报, 2006, 27(3): 406-409.
Wang X J, Zhang X T, Jiang X H, et al. Studies on the self-arrangement of β-FeOOH nanowires and the formation mechanism[J]. Chemical Journal of Chinese Universities, 2006, 27(3): 406-409.
31 Wang X M, Liu F, Tan W F, et al. Characteristics of phosphate adsorption-desorption onto ferrihydrite[J]. Soil Science, 2013, 178(1): 1-11.
32 黄潇. 多级AO-深床滤池工艺深度处理城市污水效能及微生物特征[D]. 哈尔滨: 哈尔滨工业大学, 2019.
Huang X. Multistage A/O combined with deep bed filter process treating municipal wastewater: performance and microbial characteristics[D]. Harbin: Harbin Institute of Technology, 2019.
33 陈凡雨, 徐仲, 尤宏, 等. 缺氧MBR-MMR处理海水养殖废水性能及膜污染特性[J]. 环境科学, 2020, 41(6): 2762-2770.
Chen F Y, Xu Z, You H, et al. Performance and membrane fouling characteristics of mariculture wastewater treated by anoxic MBR-MMR[J]. Environmental Science, 2020, 41(6): 2762-2770.
34 Ding Y, Tian Y, Li Z P, et al. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor[J]. Bioresource Technology, 2015, 192: 105-114.
35 张兰河, 张明爽, 郭静波, 等. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098.
Zhang L H, Zhang M S, Guo J B, et al. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process[J]. CIESC Journal, 2019, 70(3): 1089-1098.
[1] 曲泓硕, 张伦, 张小松, 纪文彬. 溶液除湿系统空气状态影响因素[J]. 化工学报, 2021, 72(S1): 210-217.
[2] 孙博, 王建伟, 张小松. 基于电渗析的溶液再生传质模型及性能分析[J]. 化工学报, 2021, 72(S1): 218-226.
[3] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[4] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[5] 汪谦旭, 刘益才, 梁恒, 李政, 赵祥乐. 融霜下落水对换热器除霜性能的影响[J]. 化工学报, 2021, 72(S1): 356-361.
[6] 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69.
[7] 刘璐, 丁国良, 庄大伟, 杨艺菲, 杜心远. 微通道换热器百叶窗翅片排水性能的CFD模拟[J]. 化工学报, 2021, 72(S1): 91-97.
[8] 张学平, 崔瑞芝, 桑世华. NaBr-CaBr2-H2O和KBr-CaBr2-H2O三元体系273.15 K相平衡实验及计算[J]. 化工学报, 2021, 72(9): 4479-4486.
[9] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
[10] 黄莉婷, 韩昫身, 金艳, 马强, 于建国. 煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究[J]. 化工学报, 2021, 72(9): 4881-4891.
[11] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[12] 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J]. 化工学报, 2021, 72(8): 4267-4278.
[13] 李琪, 张容铭, 胡鹏飞. LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响[J]. 化工学报, 2021, 72(8): 4121-4133.
[14] 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254.
[15] 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡志华, 杨燕华, 刘磊, 周芳德. 垂直上升管内有水平柱体时气液两相局部流型转变的研究[J]. CIESC Journal, 2006, 14(4): 442 -449 .
[2] 张英, 苏宏业, 褚健. 基于支持向量基的关联规则挖掘及其在模拟移动床PX吸附分离过程中的应用[J]. CIESC Journal, 2005, 13(6): 751 -757 .
[3] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[4] 朱春英,段志青, 高习群, 马友光, 余国琮. 氨基酸在非牛顿流体中的扩散[J]. CIESC Journal, 2006, 14(4): 450 -455 .
[5] PatrickPERRE. 硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型[J]. CIESC Journal, 2004, 12(6): 783 -791 .
[6] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[7] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[8] 马璐, 李浩然, 王从敏, 韩世钧. α-蒎烯+顺式蒎烷+正已醇体系的等温等压汽液平衡[J]. CIESC Journal, 2004, 12(1): 92 -95 .
[9] 钟理, 罗京莉, K.Chuang. 中温H2S-空气燃料电池阴极催化剂的研究[J]. CIESC Journal, 2007, 15(3): 305 -308 .
[10] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .