化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4931-4940.DOI: 10.11949/0438-1157.20210001
贾艳萍1(),单晓倩1,宋祥飞1,佟泽为2,张健1,张兰河1()
收稿日期:
2021-01-03
修回日期:
2021-04-08
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
张兰河
作者简介:
贾艳萍(1973—),女,博士,教授,基金资助:
Yanping JIA1(),Xiaoqian SHAN1,Xiangfei SONG1,Zewei TONG2,Jian ZHANG1,Lanhe ZHANG1()
Received:
2021-01-03
Revised:
2021-04-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Lanhe ZHANG
摘要:
餐饮废水是一种污染严重、成分复杂的高浓度有机废水。为了降低生化处理的负荷,采用混凝沉淀工艺对餐饮废水进行预处理,利用响应面法优化混凝工艺条件。通过扫描电子显微镜(SEM)、X射线能谱(EDS)及X射线衍射(XRD)分析絮体组成结构的变化,采用三维荧光光谱对比餐饮废水处理前后有机物成分的变化,探究餐饮废水的降解机理。结果表明:在初始pH 7.75,FeCl3投加量为101.84 mg/L,搅拌及沉降时间分别为42.05 s和25.99 min的条件下,响应面法预测COD去除率为45.34%,与实测值仅相差0.02%(<2%)。由SEM、EDS及XRD分析可知,混凝前原水的悬浮物表面相对平整,混凝后的沉淀物颗粒表面粗糙,且表面呈空间网状结构;混凝前后废水的絮体主要含有C、Cl、Na、O、N、P等元素;混凝后的絮体表面附着铁的氢氧化物。通过三维荧光分析可知,混凝沉淀工艺能有效地去除可溶性微生物副产物和腐殖酸类物质。
中图分类号:
贾艳萍, 单晓倩, 宋祥飞, 佟泽为, 张健, 张兰河. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940.
Yanping JIA, Xiaoqian SHAN, Xiangfei SONG, Zewei TONG, Jian ZHANG, Lanhe ZHANG. Optimization of coagulation process of catering wastewater by response surface methodology[J]. CIESC Journal, 2021, 72(9): 4931-4940.
废水 | COD/(mg/L) | BOD/(mg/L) | TN/(mg/L) | 浊度/NTU | TP/(mg/L) | 动植物油/(mg/L) | pH | 气味 |
---|---|---|---|---|---|---|---|---|
处理前废水 | 1715±200 | 549±200 | 30.15±5 | 300.1±50 | 2.66±1 | 196±50 | 5.01±1 | 酸臭味 |
预处理后废水 | 1101±200 | 517±200 | 12.86±2 | 21.52±50 | 2.02±1 | 36±15 | 7±1 | 少量酸臭味 |
表1 餐饮废水水质指标
Table 1 The quality index of catering wastewater
废水 | COD/(mg/L) | BOD/(mg/L) | TN/(mg/L) | 浊度/NTU | TP/(mg/L) | 动植物油/(mg/L) | pH | 气味 |
---|---|---|---|---|---|---|---|---|
处理前废水 | 1715±200 | 549±200 | 30.15±5 | 300.1±50 | 2.66±1 | 196±50 | 5.01±1 | 酸臭味 |
预处理后废水 | 1101±200 | 517±200 | 12.86±2 | 21.52±50 | 2.02±1 | 36±15 | 7±1 | 少量酸臭味 |
BOD/COD | 可生化性 |
---|---|
>0.45 | 较好 |
0.3~0.45 | 可以 |
0.2~0.3 | 较难 |
<0.2 | 不宜 |
表2 废水可生化性评价指标
Table 2 Evaluation index of wastewater biodegradability
BOD/COD | 可生化性 |
---|---|
>0.45 | 较好 |
0.3~0.45 | 可以 |
0.2~0.3 | 较难 |
<0.2 | 不宜 |
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | ― | 7 | 8 | 9 |
B | FeCl3投加量 | mg/L | 90 | 100 | 110 |
C | 搅拌时间 | s | 20 | 40 | 60 |
D | 沉降时间 | min | 20 | 30 | 40 |
表3 响应面实验因素及水平设计
Table 3 The experimental factor and level design for response surface
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | ― | 7 | 8 | 9 |
B | FeCl3投加量 | mg/L | 90 | 100 | 110 |
C | 搅拌时间 | s | 20 | 40 | 60 |
D | 沉降时间 | min | 20 | 30 | 40 |
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | -1 | 0 | -1 | 0 | 41.91 |
2 | -1 | 0 | 1 | 0 | 41.08 |
3 | 1 | 0 | 1 | 0 | 39.92 |
4 | -1 | 0 | 0 | 1 | 38.92 |
5 | 0 | -1 | 0 | 1 | 35.95 |
6 | 0 | 0 | 0 | 0 | 45.29 |
7 | 0 | 0 | 0 | 0 | 44.50 |
8 | 0 | 0 | 0 | 0 | 44.66 |
9 | -1 | -1 | 0 | 0 | 35.95 |
10 | 1 | 0 | -1 | 0 | 37.30 |
11 | 1 | -1 | 0 | 0 | 37.08 |
12 | 0 | 1 | 0 | 1 | 32.28 |
13 | 0 | -1 | -1 | 0 | 36.21 |
14 | 0 | 0 | 1 | -1 | 43.39 |
15 | 0 | 0 | 1 | 1 | 40.44 |
16 | 0 | 0 | 0 | 0 | 43.91 |
17 | 0 | 0 | 0 | 0 | 45.36 |
18 | 0 | 1 | 0 | -1 | 41.92 |
19 | -1 | 1 | 0 | 0 | 39.84 |
20 | 0 | 1 | 1 | 0 | 38.45 |
21 | 1 | 0 | 0 | 1 | 36.62 |
22 | 0 | -1 | 0 | -1 | 36.49 |
23 | 0 | -1 | 1 | 0 | 38.54 |
24 | -1 | 0 | 0 | -1 | 42.27 |
25 | 1 | 1 | 0 | 0 | 36.51 |
26 | 1 | 0 | 0 | -1 | 38.61 |
27 | 0 | 1 | -1 | 0 | 39.71 |
28 | 0 | 0 | -1 | 1 | 38.29 |
29 | 0 | 0 | -1 | -1 | 40.69 |
表4 响应面实验组次设计及实验结果
Table 4 Experiment design and experimental results of response surface test group
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | -1 | 0 | -1 | 0 | 41.91 |
2 | -1 | 0 | 1 | 0 | 41.08 |
3 | 1 | 0 | 1 | 0 | 39.92 |
4 | -1 | 0 | 0 | 1 | 38.92 |
5 | 0 | -1 | 0 | 1 | 35.95 |
6 | 0 | 0 | 0 | 0 | 45.29 |
7 | 0 | 0 | 0 | 0 | 44.50 |
8 | 0 | 0 | 0 | 0 | 44.66 |
9 | -1 | -1 | 0 | 0 | 35.95 |
10 | 1 | 0 | -1 | 0 | 37.30 |
11 | 1 | -1 | 0 | 0 | 37.08 |
12 | 0 | 1 | 0 | 1 | 32.28 |
13 | 0 | -1 | -1 | 0 | 36.21 |
14 | 0 | 0 | 1 | -1 | 43.39 |
15 | 0 | 0 | 1 | 1 | 40.44 |
16 | 0 | 0 | 0 | 0 | 43.91 |
17 | 0 | 0 | 0 | 0 | 45.36 |
18 | 0 | 1 | 0 | -1 | 41.92 |
19 | -1 | 1 | 0 | 0 | 39.84 |
20 | 0 | 1 | 1 | 0 | 38.45 |
21 | 1 | 0 | 0 | 1 | 36.62 |
22 | 0 | -1 | 0 | -1 | 36.49 |
23 | 0 | -1 | 1 | 0 | 38.54 |
24 | -1 | 0 | 0 | -1 | 42.27 |
25 | 1 | 1 | 0 | 0 | 36.51 |
26 | 1 | 0 | 0 | -1 | 38.61 |
27 | 0 | 1 | -1 | 0 | 39.71 |
28 | 0 | 0 | -1 | 1 | 38.29 |
29 | 0 | 0 | -1 | -1 | 40.69 |
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 295.00 | 14 | 21.07 | 24.98 | <0.0001 | 极显著 |
A | 16.17 | 1 | 16.17 | 19.17 | 0.0006 | 极显著 |
B | 6.01 | 1 | 6.01 | 7.12 | 0.0184 | 显著 |
C | 4.95 | 1 | 4.95 | 5.87 | 0.0295 | 显著 |
D | 36.3 | 1 | 36.30 | 43.03 | <0.0001 | 极显著 |
AB | 4.97 | 1 | 4.97 | 5.90 | 0.0293 | 显著 |
AC | 2.98 | 1 | 2.98 | 3.53 | 0.0813 | 不显著 |
AD | 0.46 | 1 | 0.46 | 0.55 | 0.4713 | 不显著 |
BC | 3.22 | 1 | 3.22 | 3.82 | 0.0709 | 不显著 |
BD | 20.70 | 1 | 20.70 | 24.54 | 0.0002 | 极显著 |
CD | 0.076 | 1 | 0.076 | 0.090 | 0.7690 | 不显著 |
A2 | 50.96 | 1 | 50.96 | 60.41 | <0.0001 | 极显著 |
B2 | 158.15 | 1 | 158.15 | 187.50 | <0.0001 | 极显著 |
C2 | 15.84 | 1 | 15.84 | 18.75 | 0.0007 | 极显著 |
D2 | 51.60 | 1 | 51.60 | 61.17 | <0.0001 | 极显著 |
残差 | 11.81 | 14 | 0.84 | |||
失拟项 | 10.36 | 10 | 1.04 | 2.88 | 0.1598 | 不显著 |
误差 | 1.44 | 4 | 0.36 | |||
合计 | 306.81 | 28 | ||||
标准偏差 | 0.92 | 相关系数 | 0.9615 | |||
平均值 | 39.73 | 校正决定系数 | 0.9230 | |||
变异系数 | 2.31 | 预测相关系数 | 0.7980 | |||
压力系数 | 61.98 | 信噪比 | 16.752 |
表5 COD去除率(响应值Y)模型方差分析
Table 5 Variance analysis of COD removal efficiency (response value Y) model
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 295.00 | 14 | 21.07 | 24.98 | <0.0001 | 极显著 |
A | 16.17 | 1 | 16.17 | 19.17 | 0.0006 | 极显著 |
B | 6.01 | 1 | 6.01 | 7.12 | 0.0184 | 显著 |
C | 4.95 | 1 | 4.95 | 5.87 | 0.0295 | 显著 |
D | 36.3 | 1 | 36.30 | 43.03 | <0.0001 | 极显著 |
AB | 4.97 | 1 | 4.97 | 5.90 | 0.0293 | 显著 |
AC | 2.98 | 1 | 2.98 | 3.53 | 0.0813 | 不显著 |
AD | 0.46 | 1 | 0.46 | 0.55 | 0.4713 | 不显著 |
BC | 3.22 | 1 | 3.22 | 3.82 | 0.0709 | 不显著 |
BD | 20.70 | 1 | 20.70 | 24.54 | 0.0002 | 极显著 |
CD | 0.076 | 1 | 0.076 | 0.090 | 0.7690 | 不显著 |
A2 | 50.96 | 1 | 50.96 | 60.41 | <0.0001 | 极显著 |
B2 | 158.15 | 1 | 158.15 | 187.50 | <0.0001 | 极显著 |
C2 | 15.84 | 1 | 15.84 | 18.75 | 0.0007 | 极显著 |
D2 | 51.60 | 1 | 51.60 | 61.17 | <0.0001 | 极显著 |
残差 | 11.81 | 14 | 0.84 | |||
失拟项 | 10.36 | 10 | 1.04 | 2.88 | 0.1598 | 不显著 |
误差 | 1.44 | 4 | 0.36 | |||
合计 | 306.81 | 28 | ||||
标准偏差 | 0.92 | 相关系数 | 0.9615 | |||
平均值 | 39.73 | 校正决定系数 | 0.9230 | |||
变异系数 | 2.31 | 预测相关系数 | 0.7980 | |||
压力系数 | 61.98 | 信噪比 | 16.752 |
元素 | 混凝前 | 混凝后 | |||
---|---|---|---|---|---|
质量分数/% | 原子分数/% | 质量分数/% | 原子分数/% | ||
C | 50.30 | 65.27 | 26.51 | 43.01 | |
N | 5.90 | 6.60 | 6.00 | 8.35 | |
O | 10.54 | 10.33 | 10.80 | 13.15 | |
Na | 10.73 | 7.31 | 14.63 | 12.40 | |
Mg | 1.14 | 0.74 | 1.22 | 0.98 | |
Si | 0.67 | 0.37 | 0.99 | 0.69 | |
P | 0.88 | 0.44 | 1.00 | 0.63 | |
S | 3.68 | 1.80 | 2.72 | 1.65 | |
Cl | 13.85 | 6.12 | 24.59 | 13.52 | |
K | 1.37 | 0.55 | 10.05 | 5.01 | |
Ca | 1.21 | 0.47 | 0.63 | 0.31 | |
Fe | — | — | 0.87 | 0.30 |
表6 混凝前后沉淀固体表面元素分析
Table 6 Analysis of surface elements of precipitated solid before and after coagulation
元素 | 混凝前 | 混凝后 | |||
---|---|---|---|---|---|
质量分数/% | 原子分数/% | 质量分数/% | 原子分数/% | ||
C | 50.30 | 65.27 | 26.51 | 43.01 | |
N | 5.90 | 6.60 | 6.00 | 8.35 | |
O | 10.54 | 10.33 | 10.80 | 13.15 | |
Na | 10.73 | 7.31 | 14.63 | 12.40 | |
Mg | 1.14 | 0.74 | 1.22 | 0.98 | |
Si | 0.67 | 0.37 | 0.99 | 0.69 | |
P | 0.88 | 0.44 | 1.00 | 0.63 | |
S | 3.68 | 1.80 | 2.72 | 1.65 | |
Cl | 13.85 | 6.12 | 24.59 | 13.52 | |
K | 1.37 | 0.55 | 10.05 | 5.01 | |
Ca | 1.21 | 0.47 | 0.63 | 0.31 | |
Fe | — | — | 0.87 | 0.30 |
1 | 樊立萍, 苗晓慧. 微生物燃料电池处理餐饮废水及同步发电性能研究[J]. 燃料化学学报, 2014, 42(12): 1506-1512. |
Fan L P, Miao X H. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1506-1512. | |
2 | Katam K, Bhattacharyya D. Comparative study on treatment of kitchen wastewater using a mixed microalgal culture and an aerobic bacterial culture: kinetic evaluation and FAME analysis[J]. Environmental Science and Pollution Research, 2018, 25(21): 20732-20742. |
3 | Dong Y, Safferman S I, Ostahowski J, et al. Enzyme pretreatment of fats, oil and grease from restaurant waste to prolong septic soil treatment system effectiveness[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(1): 55-63. |
4 | 蔡宏镇, 沈忱, 任满年, 等. 环流气浮法处理含油水体工艺[J]. 化工学报, 2015, 66(2): 605-611. |
Cai H Z, Shen C, Ren M N, et al. Loop flotation for oil-containing water treatment[J]. CIESC Journal, 2015, 66(2): 605-611. | |
5 | 尹艳华, 徐复铭, 赵毅, 等. 膜生物反应器处理餐饮废水的初步研究[J]. 应用基础与工程科学学报, 2005, 13(4): 358-365. |
Yin Y H, Xu F M, Zhao Y, et al. The primary study of the membrane bioreactor to treat restaurant wastewater[J]. Journal of Basic Science and Engineering, 2005, 13(4): 358-365. | |
6 | 樊立萍, 郑钰姣, 苗晓慧. 阴极液及溶氧对微生物燃料电池性能的影响[J]. 高校化学工程学报, 2016, 30(2): 491-496. |
Fan L P, Zheng Y J, Miao X H. Effects of catholyte and dissolved oxygen on microbial fuel cell performance[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 491-496. | |
7 | 聂丽君, 钟华文, 周如金, 等. 混凝/厌氧/兼氧-好氧膜生物反应器组合新工艺处理制革废水[J]. 化工学报, 2016, 67(9): 3995-4003. |
Nie L J, Zhong H W, Zhou R J, et al. Treatment of tanning wastewater by integrated process consisted of coagulation, anaerobic baffled reactor and anoxic/aerobic-membrane bioreactor[J]. CIESC Journal, 2016, 67(9): 3995-4003. | |
8 | 亓秋波, 高宝玉, 鹿时雨, 等. 混凝预处理大豆蛋白废水实验研究[J]. 中国环境科学, 2014, 34(1): 143-149. |
Qi Q B, Gao B Y, Lu S Y, et al. Pretreatment of soybean protein wastewater by coagulation[J]. China Environmental Science, 2014, 34(1): 143-149. | |
9 | 张兰河, 万洒, 陈子成, 等. 高分子絮凝剂处理高浓度化妆品原料生产废水研究[J]. 化工学报, 2020, 71(8): 3730-3740. |
Zhang L H, Wan S, Chen Z C, et al. Treatment of high-strength wastewater generated in cosmetics raw materials production using polymer flocculants[J]. CIESC Journal, 2020, 71(8): 3730-3740. | |
10 | Dotto J, Fagundes-Klen M R, Veit M T, et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208: 656-665. |
11 | 张鹏, 王雨露, 丁文杰, 等. 新型巯基絮凝剂PAM-GSH的合成及除Mn(Ⅱ)性能研究[J]. 化工学报, 2019, 70(5): 1932-1941. |
Zhang P, Wang Y L, Ding W J, et al. Synthesis of new sulfhydryl flocculant PAM-GSH and its performance in removing Mn(Ⅱ)[J]. CIESC Journal, 2019, 70(5): 1932-1941. | |
12 | 方乘, 杨盛, 吴云, 等. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723. |
Fang C, Yang S, Wu Y, et al. Effect of floc surface morphology on membrane pollution prediction[J]. CIESC Journal, 2020, 71(2): 715-723. | |
13 | 王永良, 杨晓玲, 董永霞, 等. pH调整剂对含砷酸性废水中氧化Fe(Ⅱ)共沉淀固砷行为的影响[J]. 化工学报, 2019, 70(9): 3511-3516. |
Wang Y L, Yang X L, Dong Y X, et al. Effect of pH adjustment on immobilization of arsenic by coprecipitation through oxidizing Fe(Ⅱ) in acidic wastewater containing arsenic[J]. CIESC Journal, 2019, 70(9): 3511-3516. | |
14 | Wang W, Yue Q Y, Li R H, et al. Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 423-430. |
15 | Kim Y G, Song J B, Yang D G, et al. Purification of chemical mechanical polishing wastewater via superconducting high gradient magnetic separation system with optimal coagulation process[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1-5. |
16 | 刘永旺, 李星, 杨艳玲, 等. 混凝/吸附预处理对超滤膜过滤特性的影响[J]. 北京理工大学学报, 2014, 34(6): 638-643. |
Liu Y W, Li X, Yang Y L, et al. Effect of coagulation/adsorption pretreatment on ultrafiltration characteristics[J]. Transactions of Beijing Institute of Technology, 2014, 34(6): 638-643. | |
17 | 冯爱辉. 化学混凝-SBR法处理含油废水试验研究[D]. 西安: 长安大学, 2006. |
Feng A H. Experimental research on the oily wastewater treatment by chemical coagulation-SBR process[D]. Xi'an: Chang'an University, 2006. | |
18 | 杨艳. 煤制油低浓度含油废水处理工艺研究[D]. 包头: 内蒙古科技大学, 2011. |
Yang Y. Study on technique for the treatment of coal-to-liquids low denisity oil wastewater[D]. Baotou: Inner Mongolia University of Science & Technology, 2011. | |
19 | Louhichi G, Khouni I, Ghrabi A. Enhanced efficiency of the coagulation/flocculation treatment of vegetable oil refinery wastewater using response surface methodology[C]//Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2018: 223-226. |
20 | Painmanakul P, Sastaravet P, Lersjintanakarn S, et al. Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by induced air flotation (IAF) process[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 693-702. |
21 | 程华农, 邱娜娜, 岳金彩, 等. 采用响应面法降低湿法氧化脱硫中Na2S2O3生成量[J]. 化工学报, 2020, 71(4): 1762-1771. |
Cheng H N, Qiu N N, Yue J C, et al. Reduction of Na2S2O3 production in wet oxidation desulfurization by response surface method[J]. CIESC Journal, 2020, 71(4): 1762-1771. | |
22 | 唐海, 沙俊鹏, 欧阳龙, 等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报, 2015, 66(2): 785-792. |
Tang H, Sha J P, Ouyang L, et al. Persulfate activated by Fe(Ⅱ) for oxidation and disintegration of excess sludge[J]. CIESC Journal, 2015, 66(2): 785-792. | |
23 | 马艳红, 陆江银, 胡子昭, 等. 响应面法优化制备戊烯/辛烯/十二烯共聚物减阻剂[J]. 化工学报, 2017, 68(5): 2195-2203. |
Ma Y H, Lu J Y, Hu Z Z, et al. Preparation of 1-pentene/1-octene/1-dodecene terpolymer drag reducer by response surface method[J]. CIESC Journal, 2017, 68(5): 2195-2203. | |
24 | 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342. |
Zhu L Y, Wang Y M, Zhou X F. Application of response surface methodology in optimizing electrocatalytic degradation of dye wastewater[J]. CIESC Journal, 2020, 71(3): 1335-1342. | |
25 | 李俊. 预处理-SBR法处理餐饮废水的试验研究[D]. 武汉: 武汉科技大学, 2010. |
Li J. Study on the restaurant wastewater treatment by combined process of pretreatment -SBR[D]. Wuhan: Wuhan University of Science and Technology, 2010. | |
26 | 贾瑞来, 刘吉宝, 魏源送. 基于响应面分析法的微波-过氧化氢-碱预处理污泥水解酸化优化研究[J]. 环境科学学报, 2016, 36(3): 920-931. |
Jia R L, Liu J B, Wei Y S. Response surface methodology for the optimization of hydrolysis and acidification of sludge pretreated by the microwave-H2O2-alkaline process[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 920-931. | |
27 | 胡甜甜, 赵地顺, 武宇, 等. 醚基功能化离子液体催化合成乙酸正丁酯[J]. 化工学报, 2017, 68(1): 136-145. |
Hu T T, Zhao D S, Wu Y, et al. Synthesis of n-butyl acetate by ether-functionalized ionic liquid[J]. CIESC Journal, 2017, 68(1): 136-145. | |
28 | Devi P, Das U, Dalai A K. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems[J]. The Science of the Total Environment, 2016, 571: 643-657. |
29 | 李优平. 钛盐混凝去除无机As(Ⅲ)的实验研究[D]. 西安: 西安建筑科技大学, 2014. |
Li Y P. Removal of inorganic As(Ⅲ) by titanium salt coagulation[D]. Xi'an: Xi'an University of Architecture and Technology, 2014. | |
30 | 王晓娟, 张兴堂, 蒋晓红, 等. β-FeOOH纳米线的自排列及形成机理研究[J]. 高等学校化学学报, 2006, 27(3): 406-409. |
Wang X J, Zhang X T, Jiang X H, et al. Studies on the self-arrangement of β-FeOOH nanowires and the formation mechanism[J]. Chemical Journal of Chinese Universities, 2006, 27(3): 406-409. | |
31 | Wang X M, Liu F, Tan W F, et al. Characteristics of phosphate adsorption-desorption onto ferrihydrite[J]. Soil Science, 2013, 178(1): 1-11. |
32 | 黄潇. 多级AO-深床滤池工艺深度处理城市污水效能及微生物特征[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Huang X. Multistage A/O combined with deep bed filter process treating municipal wastewater: performance and microbial characteristics[D]. Harbin: Harbin Institute of Technology, 2019. | |
33 | 陈凡雨, 徐仲, 尤宏, 等. 缺氧MBR-MMR处理海水养殖废水性能及膜污染特性[J]. 环境科学, 2020, 41(6): 2762-2770. |
Chen F Y, Xu Z, You H, et al. Performance and membrane fouling characteristics of mariculture wastewater treated by anoxic MBR-MMR[J]. Environmental Science, 2020, 41(6): 2762-2770. | |
34 | Ding Y, Tian Y, Li Z P, et al. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor[J]. Bioresource Technology, 2015, 192: 105-114. |
35 | 张兰河, 张明爽, 郭静波, 等. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098. |
Zhang L H, Zhang M S, Guo J B, et al. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process[J]. CIESC Journal, 2019, 70(3): 1089-1098. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||