化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5520-5532.DOI: 10.11949/0438-1157.20210034
冶雪艳1,2(),李铮1,2,罗冉1,宋亚霖1,崔瑞娟1,2
收稿日期:
2021-04-08
修回日期:
2021-09-15
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
冶雪艳
作者简介:
冶雪艳(1978—), 女, 教授,基金资助:
Xueyan YE1,2(),Zheng LI1,2,Ran LUO1,Yalin SONG1,Ruijuan CUI1,2
Received:
2021-04-08
Revised:
2021-09-15
Online:
2021-11-05
Published:
2021-11-12
Contact:
Xueyan YE
摘要:
通过一系列室内砂柱模拟实验,研究了流速对胶体在饱和多孔介质中滞留-迁移行为的影响;运用COMSOL软件模拟,拟合实验数据后得到表征胶体沉积的关键参数。结果表明:流速增大缩短了胶体在多孔介质中的滞留时间,并增强水动力拖拽力,导致介质对胶体的吸附量减少,有利于胶体的迁移;回灌时间的延续造成的多孔介质渗透系数降低,可通过瞬间增大流速使渗透系数在较短时间内恢复,然而随后形成新的吸附渗透性仍会降低。水源离子强度、介质粗糙度等因素会影响胶体迁移的流速效应。在相同条件下,吸附系数随着离子强度的增大而增加,随着流速的增大而增加。综合来看,离子强度的增加可抵消一部分水动力拖拽力的影响,提高胶体在多孔介质中滞留的概率;介质表面粗糙度的增加,可削弱水动力拖拽力作用,同时增加胶体与介质的吸附、沉积点位和接触面积,导致胶体易于在多孔介质中发生滞留并可能进一步导致介质堵塞。
中图分类号:
冶雪艳, 李铮, 罗冉, 宋亚霖, 崔瑞娟. 地下水人工补给过程中流速对多孔介质胶体堵塞的影响机理[J]. 化工学报, 2021, 72(11): 5520-5532.
Xueyan YE, Zheng LI, Ran LUO, Yalin SONG, Ruijuan CUI. Mechanism of influence of flow velocity on colloid blockage in porous media during artificial groundwater recharge[J]. CIESC Journal, 2021, 72(11): 5520-5532.
介质 | D10 /μm | D30 /μm | D50/μm | D60/μm | Cc | Cu |
---|---|---|---|---|---|---|
河砂 | 103.2 | 195.5 | 254.6 | 290.2 | 1.3 | 2.8 |
玻璃珠 | 168.7 | 208.3 | 250.1 | 262.5 | 1.0 | 1.6 |
表1 入渗介质粒径分布特征值
Table 1 Characteristic value of particle size distribution of infiltration medium
介质 | D10 /μm | D30 /μm | D50/μm | D60/μm | Cc | Cu |
---|---|---|---|---|---|---|
河砂 | 103.2 | 195.5 | 254.6 | 290.2 | 1.3 | 2.8 |
玻璃珠 | 168.7 | 208.3 | 250.1 | 262.5 | 1.0 | 1.6 |
编号 | 介质 | L柱/ cm | D50/μm | d50/μm | IS/ (mmol/L) | U/(m/d) | |||
---|---|---|---|---|---|---|---|---|---|
阶段Ⅰ | 阶段Ⅱ | 阶段Ⅲ | |||||||
E1 | 河砂 | 16 | 254 | 2 | 30 | 5 | 5 | 50 | 100 |
E2 | 玻璃珠 | 16 | 250 | 2 | 0 | 5 | 5 | 50 | 100 |
E3 | 河砂 | 16 | 254 | 2 | 0 | 5 | 5 | 50 | 100 |
E4 | 河砂 | 16 | 254 | 2 | 30 | 50 | 50 | 100 | 150 |
E5 | 玻璃珠 | 16 | 250 | 2 | 30 | 50 | 50 | 100 | 150 |
表2 实验方案
Table 2 List of experimental schemes
编号 | 介质 | L柱/ cm | D50/μm | d50/μm | IS/ (mmol/L) | U/(m/d) | |||
---|---|---|---|---|---|---|---|---|---|
阶段Ⅰ | 阶段Ⅱ | 阶段Ⅲ | |||||||
E1 | 河砂 | 16 | 254 | 2 | 30 | 5 | 5 | 50 | 100 |
E2 | 玻璃珠 | 16 | 250 | 2 | 0 | 5 | 5 | 50 | 100 |
E3 | 河砂 | 16 | 254 | 2 | 0 | 5 | 5 | 50 | 100 |
E4 | 河砂 | 16 | 254 | 2 | 30 | 50 | 50 | 100 | 150 |
E5 | 玻璃珠 | 16 | 250 | 2 | 30 | 50 | 50 | 100 | 150 |
实验编号 | IS/(mmol/L) | U/(m/d) | 渗透介质 | α/s-1 | β/s-1 |
---|---|---|---|---|---|
E1 | 30 | 5 | 河砂 | 1.6×10-3 | 1.01×10-5 |
E2 | 0 | 5 | 玻璃珠 | 3.6×10-5 | 1.3×10-7 |
E3 | 0 | 5 | 河砂 | 7.2×10-5 | 4.5×10-7 |
E4 | 30 | 50 | 河砂 | 5.9×10-3 | 2.5×10-4 |
E5 | 30 | 50 | 玻璃珠 | 6.7×10-3 | 5.2×10-4 |
表3 COMSOL模拟不同条件下胶体吸附解吸参数
Table 3 COMSOL simulation of colloid adsorption and desorption parameters under different conditions
实验编号 | IS/(mmol/L) | U/(m/d) | 渗透介质 | α/s-1 | β/s-1 |
---|---|---|---|---|---|
E1 | 30 | 5 | 河砂 | 1.6×10-3 | 1.01×10-5 |
E2 | 0 | 5 | 玻璃珠 | 3.6×10-5 | 1.3×10-7 |
E3 | 0 | 5 | 河砂 | 7.2×10-5 | 4.5×10-7 |
E4 | 30 | 50 | 河砂 | 5.9×10-3 | 2.5×10-4 |
E5 | 30 | 50 | 玻璃珠 | 6.7×10-3 | 5.2×10-4 |
1 | Bouwer H. Artificial recharge of groundwater: hydrogeology and engineering[J]. Hydrogeology Journal, 2002, 10(1): 121-142. |
2 | Shen J K, Ni R. Experimental investigation of clogging dynamics in homogeneous porous medium[J]. Water Resources Research, 2017, 53(3): 1879-1890. |
3 | Siriwardene N R, Deletic A, Fletcher T D. Clogging of stormwater gravel infiltration systems and filters: insights from a laboratory study[J]. Water Research, 2007, 41(7): 1433-1440. |
4 | Mays D C, Hunt J R. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media[J]. Environ. Sci. Technol., 2007, 41(16): 5666-5671. |
5 | Compère F, Porel G, Delay F. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity[J]. Journal of Contaminant Hydrology, 2001, 49(1/2): 1-21. |
6 | Dillon P J, Hickinbotham M R, Pavelic P. Review of international experience in injecting water into aquifers for storage and reuse [C]// International Association of Hydrogeologists Congress. NSW, Australia, 1994: 13-19. |
7 | Pavelic P, Dillon P J, Barry K E, et al. Well clogging effects determined from mass balances and hydraulic response at a stormwater ASR site[C]//Artificial Recharge of Groundwater. Proceeding of the Third International Symposium on Artificial Recharge of Groundwater. Rotterdam: Balkema, 1998. |
8 | Martin R. Clogging Issues Associated with Managed Aquifer Recharge Methods[R].IAH Commission on Managing Aquifer Recharge. Australia, 2013. |
9 | Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells[J]. Water Research, 2000, 34(7): 2110-2118. |
10 | Jeong H Y, Jun S C, Cheon J Y, et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications[J]. Geosciences Journal, 2018, 22(4): 667-679. |
11 | Auset M, Keller A A. Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels[J]. Water Resources Research, 2006, 42(12): W12S02. |
12 | Bradford S A, Simunek J, Bettahar M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media[J]. Environmental Science & Technology, 2003, 37(10): 2242-2250. |
13 | Du X Q, Fang Y Q, Wang Z J, et al. The prediction methods for potential suspended solids clogging types during managed aquifer recharge[J]. Water, 2014, 6(4): 961-975. |
14 | Du X Q, Ye X Y, Zhang X W. Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge[J]. Hydrological Processes, 2018, 32(14): 2254-2262. |
15 | Du X Q, Song Y L, Ye X Y, et al. Colloid clogging of saturated porous media under varying ionic strength and roughness during managed aquifer recharge[J]. Journal of Water Reuse and Desalination, 2019, 9(3): 225-231. |
16 | Ahfir N D, Benamar A, Alem A, et al. Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study[J]. Transport in Porous Media, 2009, 76(2): 289-307. |
17 | Ahfir N D, Hammadi A, Alem A, et al. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles[J]. Journal of Environmental Sciences, 2017, 53: 161-172. |
18 | 张凡, 张永祥, 王祎啸. 基于DLVO理论探究不同因素下土壤胶体迁移堵塞问题[J]. 山东化工, 2019, 48(13): 227-231, 233. |
Zhang F, Zhang Y X, Wang Y X. Study on migration and blockage of soil colloids under different factors based on DLVO theory[J]. Shandong Chemical Industry, 2019, 48(13): 227-231, 233. | |
19 | Bradford S A, Yates S R, Bettahar M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research, 2002, 38(12): 63-1. |
20 | 杨乐沛. 离子强度对胶体及As(Ⅲ)在饱和多孔介质中运移的影响[D]. 北京: 中国地质大学(北京), 2017. |
Yang L P. Effect of ionic strength on transport of colloid and As(Ⅲ) in saturated porous media[D]. Beijing: China University of Geosciences, 2017. | |
21 | Bradford S A, Bettahar M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2006, 82(1/2): 99-117. |
22 | Shen C Y, Li B G, Huang Y F, et al. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions[J]. Environmental Science & Technology, 2007, 41(20): 6976-6982. |
23 | Zhuang J, Qi J, Jin Y. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property[J]. Environmental Science & Technology, 2005, 39(20): 7853-7859. |
24 | Sharma M M, Chamoun H, Sarma D S H S R, et al. Factors controlling the hydrodynamic detachment of particles from surfaces[J]. Journal of Colloid and Interface Science, 1992, 149(1): 121-134. |
25 | Torkzaban S, Bradford S A, Walker S L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media[J]. Langmuir, 2007, 23(19): 9652-9660. |
26 | Goldman A J, Cox R G, Brenner H. Slow viscous motion of a sphere parallel to a plane wall—Ⅱ Couette flow[J]. Chemical Engineering Science, 1967, 22(4): 653-660. |
27 | O'Neill M E. A sphere in contact with a plane wall in a slow linear shear flow[J]. Chemical Engineering Science, 1968, 23(11): 1293-1298. |
28 | Xie Y X, Wang Y, Huo M X, et al. Risk of physical clogging induced by low-density suspended particles during managed aquifer recharge with reclaimed water: evidences from laboratory experiments and numerical modeling[J]. Environmental Research, 2020, 186: 109527. |
29 | Smets B F, Grasso D, Engwall M A, et al. Surface physicochemical properties of Pseudomonas fluorescens and impact on adhesion and transport through porous media[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/2/3/4): 121-139. |
30 | 初彤. 城市雨洪水地下回灌中悬浮物堵塞引起的变饱和入渗过程和数值模拟[D]. 长春: 吉林大学, 2020. |
Chu T. The process and numerical simulation of variable saturation infiltration induced by suspended solid clogging during surface recharge for groundwater using urban rain-flood water[D]. Changchun: Jilin University, 2020. | |
31 | 路莹. 北京平谷地区雨洪水地下回灌堵塞机理分析与模拟研究[D]. 长春: 吉林大学, 2009. |
Lu Y. Mechanism and modeling of clogging during groundwater recharge with stormwater in Pinggu of Beijing[D]. Changchun: Jilin University, 2009. | |
32 | Zheng X L, Shan B B, Chen L, et al. Attachment-detachment dynamics of suspended particle in porous media: experiment and modeling[J]. Journal of Hydrology, 2014, 511: 199-204. |
33 | Kretzschmar R, Barmettler K, Grolimund D, et al. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media[J]. Water Resources Research, 1997, 33(5): 1129-1137. |
34 | Alem A, Elkawafi A, Ahfir N D, et al. Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects[J]. Hydrogeology Journal, 2013, 21(3): 573-586. |
35 | 姚舜译, 袁雪梅, 杨新瑶, 等. 粒径和流速对大肠杆菌在饱和多孔介质中迁移的影响[J]. 农业环境科学学报, 2016, 35(2): 353-357. |
Yao S Y, Yuan X M, Yang X Y, et al. Effects of particle size and pore water velocity on transport of Escherichia coli in saturated porous media[J]. Journal of Agro-Environment Science, 2016, 35(2): 353-357. | |
36 | 殷宪强, 孙慧敏, 易磊, 等. 孔隙水流速对胶体在饱和多孔介质中运移的影响[J]. 水土保持学报, 2010, 24(5): 101-104. |
Yin X Q, Sun H M, Yi L, et al. Effect of flowrate of pore water on the transport of colloid in saturated porous media[J]. Journal of Soil and Water Conservation, 2010, 24(5): 101-104. | |
37 | Díaz J, Rendueles M, Díaz M. Straining phenomena in bacteria transport through natural porous media[J]. Environmental Science and Pollution Research, 2010, 17(2): 400-409. |
38 | 袁瑞强, 郭威, 王鹏, 等. 多孔介质表面化学异质性对胶体运移的影响[J]. 环境科学学报, 2017, 37(9): 3498-3504. |
Yuan R Q, Guo W, Wang P, et al. Impacts of surface chemical heterogeneity of porous media on transport of colloid[J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3498-3504. | |
39 | Sasidharan S, Bradford S A, Torkzaban S, et al. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media[J]. Science of the Total Environment, 2017, 603/604: 406-415. |
40 | 丁武泉. 离子界面反应对土壤水分入渗的影响[D]. 重庆: 西南大学, 2016. |
Ding W Q. The effect of ion-surface interacitons on soil water infiltrability[D]. Chongqing: Southwest University, 2016. | |
41 | 冶雪艳, 杜新强, 张赫轩, 等. 回灌过程中离子强度和水流流速对胶体粒子在多孔介质中堵塞的影响[J]. 化工学报, 2017, 68(12): 4793-4801. |
Ye X Y, Du X Q, Zhang H X, et al. Effects of solution ionic strength and flow velocity on colloid clogging in saturated porous media during artificial recharge[J]. CIESC Journal, 2017, 68(12): 4793-4801. | |
42 | Burdick G M, Berman N S, Beaudoin S P. Hydrodynamic particle removal from surfaces[J]. Thin Solid Films, 2005, 488(1/2): 116-123. |
43 | Tufenkji N, Elimelech M. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir, 2004, 20(25): 10818-10828. |
44 | 袁瑞强, 张文新, 王仕琴. 饱和多孔介质中水流停滞对胶体吸附与解吸的影响[J]. 环境科学研究, 2020, 33(2): 431-437. |
Yuan R Q, Zhang W X, Wang S Q. Effects of flow stagnation on colloidal retention-release in saturated porous media[J]. Research of Environmental Sciences, 2020, 33(2): 431-437. | |
45 | Bradford S A, Torkzaban S, Walker S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media[J]. Water Research, 2007, 41(13): 3012-3024. |
46 | Burdick G M, Berman N S, Beaudoin S P. Describing hydrodynamic particle removal from surfaces using the particle Reynolds number[J]. Journal of Nanoparticle Research, 2001, 3(5): 453-465. |
47 | 沈重阳. 无利条件下胶体在多孔介质中的滞留和运移[D]. 北京: 中国农业大学, 2008. |
Shen C Y. Retention and migration of colloids in porous media under unprofitable conditions [D]. Beijing: China Agricultural University, 2008. | |
48 | Torkzaban S, Bradford S A, Vanderzalm J L, et al. Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity[J]. Journal of Contaminant Hydrology, 2015, 181: 161-171. |
49 | Sasidharan S, Torkzaban S, Bradford S A, et al. Temperature dependency of virus and nanoparticle transport and retention in saturated porous media[J]. Journal of Contaminant Hydrology, 2017, 196: 10-20. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||