化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5455-5467.DOI: 10.11949/0438-1157.20210773
收稿日期:
2021-06-08
修回日期:
2021-09-03
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
朱庆山
作者简介:
潘锋(1981—),男,博士研究生,副研究员,基金资助:
Feng PAN1(),Jiayi LIU1,Zhan DU1,Qingshan ZHU1,2()
Received:
2021-06-08
Revised:
2021-09-03
Online:
2021-11-05
Published:
2021-11-12
Contact:
Qingshan ZHU
摘要:
超细碳化钨(WC)具有硬度高、耐磨性好、强度高和韧性较高的特点,是制备硬质合金最基础的原料。因此,超细碳化钨的制备成为学术界和工业界关注的焦点,也是硬质合金制备领域研究的重点。从反应体系的角度综述了超细碳化钨粉体制备技术,对相关反应路径机理进行了分析,并展望了超细碳化钨制备技术的发展趋势。
中图分类号:
潘锋,刘家义,杜占,朱庆山. 超细碳化钨制备过程及机理研究进展[J]. 化工学报, 2021, 72(11): 5455-5467.
Feng PAN,Jiayi LIU,Zhan DU,Qingshan ZHU. Research progress on preparation process and mechanism of ultrafine tungsten carbide[J]. CIESC Journal, 2021, 72(11): 5455-5467.
1 | Bose A. A perspective on the earlist commercial PM metal-ceramic composite: centmented tungsten carbide[J]. International Journal of Powder Metallurgy, 2011, 47(2): 31-50. |
2 | 张璐, 陆必志, 徐涛. 超细碳化钨制备关键技术及评价方法研究的新进展[J]. 硬质合金, 2019, 36(6): 460-471. |
Zhang L, Lu B Z, Xu T. New progress in research on key technologies and evaluation methods for preparation of ultrafine tungsten carbide[J]. Cemented Carbide, 2019, 36(6): 460-471. | |
3 | 羊求民, 羊建高, 苏伟, 等. 纳米/超细晶WC-Co类硬质合金的研究进展[J]. 稀有金属与硬质合金, 2018, 46(1): 76-83. |
Yang Q M, Yang J G, Su W, et al. Research progress of nano/ultrafine WC-co cemented carbides[J]. Rare Metals and Cemented Carbides, 2018, 46(1): 76-83. | |
4 | Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites[J]. Nanostructured Materials, 1998, 10(5): 875-891. |
5 | Jia K, Fischer T E. Sliding wear of conventional and nanostructured cemented carbides[J]. Wear, 1997, 203/204: 310-318. |
6 | Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 288-299. |
7 | 刘铭哲, 李斌川, 韩庆, 等. 超细碳化钨粉末制备工艺研究进展[J]. 稀有金属与硬质合金, 2019, 47(2): 74-81. |
Liu M Z, Li B C, Han Q, et al. Development of preparation process of ultrafine tungsten carbide powder[J]. Rare Metals and Cemented Carbides, 2019, 47(2): 74-81. | |
8 | 罗崇玲. 传统流程生产优质超细碳化钨粉的质量控制及粒度检测[J]. 稀有金属与硬质合金, 2009, 37(4): 29-31, 35. |
Luo C L. Quality control and particle size measurement of high-quality ultrafine WC powders produced by conventional process[J]. Rare Metals and Cemented Carbides, 2009, 37(4): 29-31, 35. | |
9 | Wang G M, Campbell S J, Calka A, et al. Synthesis and structural evolution of tungsten carbide prepared by ball milling[J]. Journal of Materials Science, 1997, 32(6): 1461-1467. |
10 | Liu L, Li B, Ding X Z, et al. Preparation of nanocrystalline metal-carbides by mechanical alloying[J]. Chinese Science Bulletin, 1994, 39(14): 1166-1170. |
11 | 李斌川, 刘奎仁, 刘铭哲, 等. 一种机械力化学法制备超细碳化钨粉末的方法: 109264721B[P]. 2020-06-02. |
Li B C, Liu Q R, Liu M Z, et al. Method for preparing superfine tungsten carbide powder by mechanochemistry method: 109264721B[P]. 2020-06-02. | |
12 | 雷纯鹏, 吴爱华, 唐建成, 等. 纳米钨粉形貌结构对碳化钨粉末性能的影响[J]. 稀有金属, 2014, 38(1): 48-54. |
Lei C P, Wu A H, Tang J C, et al. Effects of morphology structure of tungsten nano-powders on properties of tungsten carbide powders[J]. Chinese Journal of Rare Metals, 2014, 38(1): 48-54. | |
13 | Ma X M, Ji G, Zhao L, et al. Structure and properties of bulk nano-structured WC-CO alloy by mechanical alloying[J]. Journal of Alloys and Compounds, 1998, 264(1/2): 267-270. |
14 | Razavi M, Rahimipour M R, Yazdani-Rad R. A novel technique for production of nano-crystalline mono tungsten carbide single phase via mechanical alloying[J]. Journal of Alloys and Compounds, 2011, 509(23): 6683-6688. |
15 | Stanciu V I, Vitry V, Delaunois F. Tungsten carbide powder obtained by direct carburization of tungsten trioxide using mechanical alloying method[J]. Journal of Alloys and Compounds, 2016, 659: 302-308. |
16 | Butler B G, Jun L U, Fang Z Z, et al. Production of nanometric tungsten carbide powders by planetary milling[J]. International Journal of Powder Metallurgy, 2007, 43(1): 35-43. |
17 | Ma J, Zhu S G. Direct solid-state synthesis of tungsten carbide nanoparticles from mechanically activated tungsten oxide and graphite[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(5): 623-627. |
18 | 魏柏万, 林钊, 李志峰, 等. 一种超细碳化钨粉末的制备方法: 102652106A[P]. 2012-08-29. |
Wei B W, Lin Z, Li Z F, et al. Method for preparing ultrafine tungsten carbide powder: 102652106A[P]. 2012-08-29. | |
19 | Onoki T, Ikeda J, Ishii K, et al. Nano crystalline tungsten mono-carbide synthesis from tungstic acid and polyacrylonitrile mixed powder[J]. Journal of the Ceramic Society of Japan, 2012, 120(1402): 262-264. |
20 | Singh H, Pandey O P. Direct synthesis of nanocrystalline tungsten carbide from scheelite ore by solid state reaction method[J]. Ceramics International, 2013, 39(1): 785-790. |
21 | Polini R, Palmieri E, Marcheselli G. Nanostructured tungsten carbide synthesis by carbothermic reduction of scheelite: a comprehensive study[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 289-300. |
22 | Hojo J, Oku T, Kato A. Tungsten carbide powders produced by the vapor phase reaction of the WCl6-CH4-H2 system[J]. Journal of the Less Common Metals, 1978, 59(1): 85-95. |
23 | Fitzsimmons M, Sarin V K. Comparison of WCl6-CH4-H2 and WF6-CH4-H2 systems for growth of WC coatings[J]. Surface and Coatings Technology, 1995, 76/77: 250-255. |
24 | Kim J C, Kim B K. Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process[J]. Scripta Materialia, 2004, 50(7): 969-972. |
25 | Pol S, Pol V, Gedanken A. Synthesis of WC nanotubes[J]. Advanced Materials, 2006, 18(15): 2023-2027. |
26 | Dushik V V, Rozhanskii N V, Lifshits V O, et al. The formation of tungsten and tungsten carbides by CVD synthesis and the proposed mechanism of chemical transformations and crystallization processes[J]. Materials Letters, 2018, 228: 164-167. |
27 | Gao L, Kear B H. Low temperature carburization of high surface area tungsten powders[J]. Nanostructured Materials, 1995, 5(5): 555-569. |
28 | Chen W H, Nayak P K, Lin H T, et al. Synthesis of nanostructured tungsten carbide via metal-organic chemical vapor deposition and carburization process[J]. International Journal of Refractory Metals and Hard Materials, 2014, 47: 44-48. |
29 | Basu A K, Sale F R. A morphological study of the carburization/reduction of tungsten oxides with carbon monoxide[J]. Metallurgical Transactions B, 1978, 9(4): 603-613. |
30 | Löfberg A, Frennet A, Leclercq G, et al. Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts[J]. Journal of Catalysis, 2000, 189(1): 170-183. |
31 | Giraudon J M, Devassine P, Lamonier J F, et al. Synthesis of tungsten carbides by temperature-programmed reaction with CH4-H2 mixtures. Influence of the CH4 and hydrogen content in the carburizing mixture[J]. Journal of Solid State Chemistry, 2000, 154(2): 412-426. |
32 | Pan F, Du Z, Li S F, et al. Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 923-932. |
33 | Wang C Y, Sun X B, Long G, et al. The formation mechanism investigations of nano-tungsten carbide powder[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2): 1269-1277. |
34 | 黄帅, 张华民. 球形黄钨制备超细碳化钨粉性能研究[J]. 稀有金属与硬质合金, 2020, 48(6): 41-45. |
Huang S, Zhang H M. Study on properties of ultra-fine WC powder prepared with spherical yellow tungsten[J]. Rare Metals and Cemented Carbides, 2020, 48(6): 41-45. | |
35 | Wang K F, Zhang G H. Synthesis of high-purity ultrafine tungsten and tungsten carbide powders[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1697-1706. |
36 | 项培云, 张华民. 紫钨晶型对超细碳化钨粉粒度的影响[J]. 稀有金属与硬质合金, 2018, 46(5): 75-78. |
Xiang P Y, Zhang H M. Effect of the crystal type of violet tungsten oxides on particle size of ultra-fine tungsten carbide powder[J]. Rare Metals and Cemented Carbides, 2018, 46(5): 75-78. | |
37 | Pan F, Zhu Q S, Li S F, et al. Decomposition-carbonization of ammonium paratungstate in a fluidized bed[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 315-322. |
38 | 姚兴旺, 郝立伟, 黄伟. APT原料粒度分布对碳化钨粉和超细晶硬质合金性能影响[J]. 江西化工, 2018(6): 122-126. |
Yao X W, Hao L W, Huang W. APT raw material's particle size distribution to influence on performances of tungsten carbide powder and ultra-fine cemented carbide[J]. Jiangxi Chemical Industry, 2018(6): 122-126. | |
39 | Mishra D, Sinha S, Sahu K K, et al. Recycling of secondary tungsten resources[J]. Transactions of the Indian Institute of Metals, 2017, 70(2): 479-485. |
40 | Nava Alonso F C, Zambrano Morales M L, Uribe Salas A, et al. Tungsten trioxide reduction-carburization with carbon monoxide-carbon dioxide mixtures: kinetics and thermodynamics[J]. International Journal of Mineral Processing, 1987, 20(1/2): 137-151. |
41 | Venables D S, Brown M E. Reduction of tungsten oxides with carbon monoxide[J]. Thermochimica Acta, 1997, 291(1/2): 131-140. |
42 | Dang J, Wu Y J, Lv Z, et al. Preparation of tungsten carbides by reducing and carbonizing WO2 with CO[J]. Journal of Alloys and Compounds, 2018, 745: 421-429. |
43 | de Medeiros F F P, da Silva A G P, de Souza C P, et al. Carburization of ammonium paratungstate by methane: the influence of reaction parameters[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(1): 43-47. |
44 | Salameh S, Gómez-Hernández J, Goulas A, et al. Advances in scalable gas-phase manufacturing and processing of nanostructured solids: a review[J]. Particuology, 2017, 30: 15-39. |
45 | Zhu X L, Zhang Q, Wang Y, et al. Review on the nanoparticle fluidization science and technology[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 9-22. |
46 | Lackner A, Filzwieser A. Gas carburizing of tungsten carbide (WC) powder: US6447742[P]. 2002-09-10. |
47 | Luidold S, Antrekowitsch H. Direct carburation of tungsten blue oxide in a fluidized bed reactor[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(4): 324-328. |
48 | Luidold S, Antrekowitsch H. New process for direct carburation of tungsten blue oxide to tungsten carbide[J]. World of Metallurgy - ERZMETALL, 2006, 59(6): 327-332. |
49 | Wu C H. Preparation of ultrafine tungsten powders by in situ hydrogen reduction of nano-needle violet tungsten oxide[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(6): 686-691. |
50 | Wang K F, Sun G D, Wu Y D, et al. Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction-carburization process[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 104975. |
51 | Pan F, Liu J Y, Du Z, et al. Reaction process of WC prepared under a CO atmosphere in a fluidized bed[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 162-172. |
52 | 许建华, 黎先财. 溶胶-凝胶法制备高表面积炭化钨[J]. 化工中间体, 2011, 7(3): 48-50. |
Xu J H, Li X C. Preparation of tungsten carbide with high surface area by Sol-gel method[J]. Chemical Intermediates, 2011, 7(3): 48-50. | |
53 | Yang R S, Xing T Y, Xu R B, et al. Molten salt synthesis of tungsten carbide powder using a mechanically activated powder[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(1): 138-140. |
54 | Zeng J H, Yuan D S, Liu Y L, et al. Synthesis of tungsten carbide nanocrystals and their electrochemical properties[J]. Frontiers of Chemistry in China, 2009, 4(2): 127-131. |
55 | 齐德才, 赵祉荣, 介孔纳米碳化钨的制备方法及产品: 106430209B[P]. 2019-02-12. |
Qi D C, Zhao Z R. Preparation methods and products of mesoporous nano WC: 106430209B[P]. 2019-02-12. | |
56 | Chen D L, Wen H J, Zhai H T, et al. Novel synthesis of hierarchical tungsten carbide micro-/nanocrystals from a single-source precursor[J]. Journal of the American Ceramic Society, 2010, 93(12): 3997-4000. |
57 | Wu Z P, Huang X L, Yin Y H, et al. Effects of atmosphere and temperature on the preparation of tungsten carbide via a one-step method[J]. Rare Metal Materials and Engineering, 2014, 43(3): 535-539. |
58 | Ma C A, Brandon N, Li G H. Preparation and formation mechanism of hollow microspherical tungsten carbide with mesoporosity[J]. The Journal of Physical Chemistry C, 2007, 111(26): 9504-9508. |
59 | Lin H, Tao B W, Xiong J, et al. Tungsten carbide (WC) nanopowders synthesized via novel core-shell structured precursors[J]. Ceramics International, 2013, 39(3): 2877-2881. |
60 | Pang C, Guo Z M, Luo J, et al. Effect of vanadium on synthesis of WC nanopowders by thermal processing of V-doped tungsten precursor[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(3): 394-398. |
61 | Wang X R, Tan D Q, Zhu H B, et al. Effect mechanism of arsenic on the growth of ultrafine tungsten carbide powder[J]. Advanced Powder Technology, 2018, 29(6): 1348-1356. |
62 | Essaki K, Rees E J, Burstein G T. Synthesis of nanoparticulate tungsten carbide under microwave irradiation[J]. Journal of the American Ceramic Society, 2010, 93(3): 692-695. |
63 | Koc R, Kodambaka S K. Tungsten carbide (WC) synthesis from novel precursors[J]. Journal of the European Ceramic Society, 2000, 20(11): 1859-1869. |
64 | 叶楠, 唐建成, 吴爱华, 等. 碳氢协同还原-碳化法制备纳米WC粉的工艺及机理[J]. 稀有金属材料与工程, 2017, 46(1): 143-149. |
Ye N, Tang J C, Wu A H, et al. Process and mechanism of WC nano-powders prepared by CarbonHydrogen coreduction-carbonization method[J]. Rare Metal Materials and Engineering, 2017, 46(1): 143-149. | |
65 | Zhang Z F, Sheng L P, Chen L, et al. Atomic-scale observation of pressure-dependent reduction dynamics of W18O49 nanowires using environmental TEM[J]. Physical Chemistry Chemical Physics, 2017, 19(25): 16307-16311. |
66 | Mohammadzadeh Valendar H, Yu D W, Barati M, et al. Isothermal kinetics of reduction and carburization of WO3-NiO nanocomposite powder by CO/CO2[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(1): 553-566. |
67 | Wang K F, Jiao S Q, Chou K C, et al. A facile pathway to prepare ultrafine WC powder via a carbothermic pre-reduction followed by carbonization with CH4-H2 mixed gases[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105118. |
68 | Wu H Y, Wang Q Y, Qin M L, et al. Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution[J]. Ceramics International, 2020, 46(7): 8787-8795. |
69 | Lemaître J, Vidick B, Delmon B. Control of the catalytic activity of tungsten carbides(Ⅰ): Preparation of highly dispersed tungsten carbides[J]. Journal of Catalysis, 1986, 99(2): 415-427. |
70 | Vidick B. Control of the catalytic activity of tungsten carbides(Ⅱ): Physicochemical characterizations of tungsten carbides[J]. Journal of Catalysis, 1986, 99(2): 428-438. |
[1] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[2] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[5] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[6] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[7] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[8] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[9] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[10] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[11] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[12] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[13] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[14] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[15] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||