化工学报 ›› 2022, Vol. 73 ›› Issue (2): 933-940.DOI: 10.11949/0438-1157.20210565
王利霞1,2(),毕肇杰1,2,史淼磊1,2,王晨1,2,王东方1,2(
),李倩2
收稿日期:
2021-08-22
修回日期:
2021-10-09
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
王东方
作者简介:
王利霞(1969—),女,博士,教授,基金资助:
Lixia WANG1,2(),Zhaojie BI1,2,Miaolei SHI1,2,Chen WANG1,2,Dongfang WANG1,2(
),Qian LI2
Received:
2021-08-22
Revised:
2021-10-09
Online:
2022-02-05
Published:
2022-02-18
Contact:
Dongfang WANG
摘要:
超高分子量聚乙烯(UHMWPE)是常用的高性能聚合物。由于高黏度的影响,极大地限制了其加工成型与应用。聚乙二醇(PEG)具有高流动性,被广泛用来改善UHMWPE的流变行为,但复合材料中添加相的分散效果对材料的性能有重要影响。采用干粉混合、溶液混合、熔融挤出共混等方式制备了不同配比UHMWPE/PEG复合材料。基于熔融拉伸实验研究了共混方式及配比对UHMWPE缠结行为及性能的影响。结果表明,PEG的加入降低了复合材料的链缠结密度。三种混合方式中,加入5%PEG时干粉混合与挤出混合解缠作用较明显,链缠结密度均降低26%左右。
中图分类号:
王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940.
Lixia WANG, Zhaojie BI, Miaolei SHI, Chen WANG, Dongfang WANG, Qian LI. Effect of blending mode and ratio of UHMWPE/PEG on the entanglement behavior and properties of UHMWPE[J]. CIESC Journal, 2022, 73(2): 933-940.
密度/(kg/m3) | 拉伸模量/MPa | 屈服应力/MPa | 断裂 应变/% | 断裂应力/MPa |
---|---|---|---|---|
930 | 680 | 20 | >450 | >41 |
表1 UHMWPE的性能
Table 1 Performance of UHMWPE
密度/(kg/m3) | 拉伸模量/MPa | 屈服应力/MPa | 断裂 应变/% | 断裂应力/MPa |
---|---|---|---|---|
930 | 680 | 20 | >450 | >41 |
样品名称 | E′/MPa | Me | Ve/(mol/m3) |
---|---|---|---|
纯UHMWPE | 2.491 | 3735 | 231 |
JH1PEG | 2.238 | 4158 | 207 |
JH3PEG | 1.895 | 4910 | 176 |
JH5PEG | 1.941 | 4793 | 180 |
JH7PEG | 1.766 | 5268 | 164 |
GH1PEG | 2.361 | 3941 | 219 |
GH3PEG | 1.963 | 4740 | 182 |
GH5PEG | 1.849 | 5032 | 171 |
JC5PEG | 1.826 | 5096 | 169 |
表2 共混样品的平均分子量和缠结密度
Table 2 The average molecular weight and entanglement density of blend samples
样品名称 | E′/MPa | Me | Ve/(mol/m3) |
---|---|---|---|
纯UHMWPE | 2.491 | 3735 | 231 |
JH1PEG | 2.238 | 4158 | 207 |
JH3PEG | 1.895 | 4910 | 176 |
JH5PEG | 1.941 | 4793 | 180 |
JH7PEG | 1.766 | 5268 | 164 |
GH1PEG | 2.361 | 3941 | 219 |
GH3PEG | 1.963 | 4740 | 182 |
GH5PEG | 1.849 | 5032 | 171 |
JC5PEG | 1.826 | 5096 | 169 |
样品名称 | 拉伸强度/MPa | 断裂应变/% | 韧性/(J/m | 屈服强度/MPa |
---|---|---|---|---|
纯UHMWPE | 44.00 | 487.80 | 134.90 | 21.10 |
JH1PEG | 37.75 | 405.70 | 103.29 | 19.80 |
JH3PEG | 35.72 | 397.10 | 96.80 | 20.13 |
JH5PEG | 33.43 | 383.50 | 87.84 | 18.40 |
GH5PEG | 26.90 | 403.00 | 83.36 | 18.20 |
JC5PEG | 24.18 | 429.20 | 82.59 | 18.20 |
表3 共混样品的力学性能参数
Table 3 Mechanical property parameters of blend samples
样品名称 | 拉伸强度/MPa | 断裂应变/% | 韧性/(J/m | 屈服强度/MPa |
---|---|---|---|---|
纯UHMWPE | 44.00 | 487.80 | 134.90 | 21.10 |
JH1PEG | 37.75 | 405.70 | 103.29 | 19.80 |
JH3PEG | 35.72 | 397.10 | 96.80 | 20.13 |
JH5PEG | 33.43 | 383.50 | 87.84 | 18.40 |
GH5PEG | 26.90 | 403.00 | 83.36 | 18.20 |
JC5PEG | 24.18 | 429.20 | 82.59 | 18.20 |
样品名称 | 熔融温度/℃ | 相对结晶度/% |
---|---|---|
纯UHMWPE | 134.95 | 46.60 |
JH1PEG | 134.39 | 48.05 |
JH3PEG | 133.53 | 50.99 |
JH5PEG | 134.46 | 48.05 |
GH5PEG | 132.94 | 49.25 |
JC5PEG | 134.57 | 48.66 |
表4 共混样品熔融温度和相对结晶度
Table 4 Melting temperature and relative crystallinity of blend samples
样品名称 | 熔融温度/℃ | 相对结晶度/% |
---|---|---|
纯UHMWPE | 134.95 | 46.60 |
JH1PEG | 134.39 | 48.05 |
JH3PEG | 133.53 | 50.99 |
JH5PEG | 134.46 | 48.05 |
GH5PEG | 132.94 | 49.25 |
JC5PEG | 134.57 | 48.66 |
1 | Xie M J, Liu X L, Li H L. Influence of poly(ethylene glycol)-containing additives on extrusion of ultrahigh molecular weight polyethylene/polypropylene blend[J]. Journal of Applied Polymer Science, 2006, 100(2): 1282-1288. |
2 | Xie M J, Li H L. Mechanical properties of an ultrahigh-molecular-weight polyethylene/polypropylene blend containing poly(ethylene glycol) additives[J]. Journal of Applied Polymer Science, 2008, 108(5): 3148-3153. |
3 | Xie M J, Li H L. Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: effect of blending with polypropylene and poly(ethylene glycol)[J]. European Polymer Journal, 2007, 43(8): 3480-3487. |
4 | Chaudhuri K, Poddar S, Pol H, et al. The effect of processing conditions on the rheological properties of blends of ultra high molecular weight polyethylene with high-density polyethylene[J]. Polymer Engineering & Science, 2019, 59(4): 821-829. |
5 | Wood W J, Maguire R G, Zhong W H. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process[J]. Composites Part B: Engineering, 2011, 42(3): 584-591. |
6 | González J, Rosales C, González M, et al. Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes[J]. Journal of Applied Polymer Science, 2017, 134(26): 44996. |
7 | Lee E M, Oh Y S, Ha H S, et al. Rheological properties of UHMWPE/iPP blends[J]. Polymers for Advanced Technologies, 2009, 20(12): 1121-1126. |
8 | Unger T, Klocke L, Herrington K, et al. Investigation of the rheological and mechanical behavior of polypropylene/ultra-high molecular weight polyethylene compounds related to new online process control[J]. Polymer Testing, 2020, 86: 106442. |
9 | Huang Y F, Xu J Z, Li J S, et al. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene[J]. Biomaterials, 2014, 35(25): 6687-6697. |
10 | Lim K L K, Ishak Z A M, Ishiaku U S, et al. High-density polyethylene/ultra high-molecular-weight polyethylene blend(Ⅰ): The processing, thermal, and mechanical properties[J]. Journal of Applied Polymer Science, 2005, 97(1): 413-425. |
11 | 卢陈, 王柯. 双辊混炼实现低缠结超高分子量聚乙烯熔融加工及高性能化[J]. 塑料工业, 2020, 48(10): 117-121. |
Lu C, Wang K. Melt processing and performance-enhanced of ultra high molecular weight polyethylene via calendar rolling[J]. China Plastics Industry, 2020, 48(10): 117-121. | |
12 | 梁雄, 伍晓宇, 李兵, 等. 超声粉末模压成型超高分子量聚乙烯微塑件的两相结构[J]. 高分子材料科学与工程, 2014, 30(12): 103-107, 112. |
Liang X, Wu X Y, Li B, et al. Two-phase structure of micro ultrasonic powder molding ultra-high molecular weight polyethylene parts[J]. Polymer Materials Science & Engineering, 2014, 30(12): 103-107, 112. | |
13 | Rastogi S, Yao Y F, Ronca S, et al. Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route[J]. Macromolecules, 2011, 44(14): 5558-5568. |
14 | Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene[J]. Biomaterials, 2001, 22(4): 371-401. |
15 | Qiao X Y, Na M Y, Gao P, et al. The crystallization and rheological behaviors of the ultrahigh molecular weight polyethylene swollen by petrolatum[J]. Polymer Testing, 2019, 80: 106115. |
16 | Liu S L, Wang F, Chen J Y, et al. Ultra-high molecular weight polyethylene with reduced fusion defects and improved mechanical properties by liquid paraffin[J]. International Journal of Polymer Analysis and Characterization, 2015, 20(2): 138-149. |
17 | Cheung S Y, Wen W J, Gao P. Disentanglement and micropore structure of UHMWPE in an athermal solvent[J]. Polymer Engineering & Science, 2015, 55(5): 1177-1186. |
18 | Li Y C, He H, Ma Y B, et al. Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(1): 51-60. |
19 | 董澎, 王柯, 李军方, 等. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响[J]. 高分子学报, 2020, 51(1): 117-124. |
Dong P, Wang K, Li J F, et al. Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties[J]. Acta Polymerica Sinica, 2020, 51(1): 117-124. | |
20 | Galetz M C, Blaβ T, Ruckdäschel H, et al. Carbon nanofibre-reinforced ultrahigh molecular weight polyethylene for tribological applications[J]. Journal of Applied Polymer Science, 2007, 104(6): 4173-4181. |
21 | 张海琛. 基于拉伸流变的UHMWPE熔融挤出过程及其结构与性能研究[D]. 广州: 华南理工大学, 2016. |
Zhang H C. Study on the melt extrusion process of UHMWPE and its morphology and properties under elongational flow[D]. Guangzhou: South China University of Technology, 2016. | |
22 | 刘铮. 不同流场作用下超高分子量聚乙烯分子量变化机制及构效关系研究[D]. 福州: 福建师范大学, 2019. |
Liu Z. Study on molecular weight change mechanism and structure-activity relationship of ultra-high molecular weight polyethylene under different flow fields[D]. Fuzhou: Fujian Normal University, 2019. | |
23 | 何振强. 超高分子量聚乙烯增强改性及加工研究[D]. 北京: 北京化工大学, 2012. |
He Z Q. Reinforced ultra high molecular weight polyethylene and the influnce of processing condtions on its properties[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
24 | Zhang J B, Cole P J, Nagpal U, et al. Direct correlation between adhesion promotion and coupling reaction at immiscible polymer-polymer interfaces[J]. The Journal of Adhesion, 2006, 82(9): 887-902. |
25 | Cole P J, Cook R F, Macosko C W. Adhesion between immiscible polymers correlated with interfacial entanglements[J]. Macromolecules, 2003, 36(8): 2808-2815. |
26 | Oslanec R, Brown H R. Entanglement density at the interface between two immiscible polymers[J]. Macromolecules, 2003, 36(15): 5839-5844. |
27 | James S P, Lee K R, Beauregard G P, et al. Clinical wear of 63 ultrahigh molecular weight polyethylene acetabular components: effect of starting resin and forming method[J]. Journal of Biomedical Materials Research, 1999, 48(3): 374-384. |
28 | Yilmaz G, Ellingham T, Turng L S. Injection and injection compression molding of ultra-high-molecular weight polyethylene powder[J]. Polymer Engineering & Science, 2019, 59(s2): E170-E179. |
29 | 谢美菊. 超高分子量聚乙烯的加工性能改进和结构与性能的研究[D]. 成都: 四川大学, 2006. |
Xie M J. Studies on processability improvement of ultra high molecular weight polyethylene and influence on its structure and properties[D]. Chengdu: Sichuan University, 2006. | |
30 | 俞欣. 超高分子量聚乙烯结晶行为及其结构性能关系的研究[D]. 上海: 华东理工大学, 2016. |
Yu X. Study on the crystallization and structure-property relationship of ultra high molecular weight polyethylene[D]. Shanghai: East China University of Science and Technology, 2016. | |
31 | 王小俊. 超高分子量聚乙烯的流变行为及其在材料加工中的应用[D]. 广州: 华南理工大学, 2010. |
Wang X J. Rheological behavior of ultra high molecular weight polyethylene and its application in molding processing[D]. Guangzhou: South China University of Technology, 2010. | |
32 | Truss R W, Han K S, Wallace J F, et al. Cold compaction molding and sintering of ultra high molecular weight polyethylene[J]. Polymer Engineering & Science, 1980, 20(11): 747-755. |
33 | Ahmad M, Wahit M U, Kadir M R A, et al. Influence of processing aids and hydroxyapatite as fillers on flow behaviour and mechanical properties of ultra high molecular weight polyethylene/high density polyethylene composites[J]. Key Engineering Materials, 2011, 471/472: 827-832. |
[1] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[2] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[3] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[4] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[5] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[6] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[7] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[8] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[9] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[10] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[11] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[12] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[13] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[14] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
[15] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 413
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 744
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||