化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6274-6281.DOI: 10.11949/0438-1157.20211300
收稿日期:
2021-09-07
修回日期:
2021-11-04
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
周春梅
作者简介:
赵婉娜(1996—),女,硕士研究生,基金资助:
Wanna ZHAO(),Chunmei ZHOU(),Yuguang JIN,Yanhui YANG
Received:
2021-09-07
Revised:
2021-11-04
Online:
2021-12-05
Published:
2021-12-22
Contact:
Chunmei ZHOU
摘要:
利用水热法制备了一系列α-MnO2催化剂用于选择性催化氧化5-羟甲基糠醛(HMF)制备2,5-呋喃二甲醛(DFF)。研究结果表明,催化剂的表面平均氧化态(AOS)与活性呈正比关系,且可以通过氧化/还原气氛焙烧进行调控。其中使用最高AOS的MnO2-NW2纳米线作催化剂,反应1 h获得了HMF转化率79%和DFF选择性99%,经过空气焙烧再生可进行6次以上的循环使用,且无失活现象。
中图分类号:
赵婉娜, 周春梅, 靳玉广, 杨艳辉. 表面氧化态可调的α-MnO2纳米线选择性催化氧化5-羟甲基糠醛[J]. 化工学报, 2021, 72(12): 6274-6281.
Wanna ZHAO, Chunmei ZHOU, Yuguang JIN, Yanhui YANG. Selective oxidation of 5-hydroxymethylfurfural over α-MnO2 nanowires with tunable surface oxidation state[J]. CIESC Journal, 2021, 72(12): 6274-6281.
Catalyst | Mn4+/Mn3+ | Olatt/Oads | BET/(m2/g) | Conversion①/% | Activity②/(mmol/(m2·h)) | AOS | |
---|---|---|---|---|---|---|---|
by TPR | by XPS | ||||||
MnO2-NF | 0.41 | 1.99 | 122.1 | 25.3 | 0.22 | 3.55 | 3.56 |
MnO2-NW1 | 0.48 | 2.26 | 66.4 | 24.2 | 0.47 | 3.76 | 3.72 |
MnO2-NW2 | 0.58 | 2.69 | 30.2 | 29.6 | 0.89 | 3.87 | 3.80 |
MnO2-NW3 | 0.49 | 2.66 | 28.1 | 26.4 | 0.60 | 3.78 | 3.75 |
表1 各种α-MnO2催化剂的表面性质和催化活性
Table 1 The surface properties and catalytic activity of the α-MnO2 catalysts
Catalyst | Mn4+/Mn3+ | Olatt/Oads | BET/(m2/g) | Conversion①/% | Activity②/(mmol/(m2·h)) | AOS | |
---|---|---|---|---|---|---|---|
by TPR | by XPS | ||||||
MnO2-NF | 0.41 | 1.99 | 122.1 | 25.3 | 0.22 | 3.55 | 3.56 |
MnO2-NW1 | 0.48 | 2.26 | 66.4 | 24.2 | 0.47 | 3.76 | 3.72 |
MnO2-NW2 | 0.58 | 2.69 | 30.2 | 29.6 | 0.89 | 3.87 | 3.80 |
MnO2-NW3 | 0.49 | 2.66 | 28.1 | 26.4 | 0.60 | 3.78 | 3.75 |
图4 不同二氧化锰催化剂在DMF为溶剂下的转化率和选择性[反应条件: 1 mmol HMF, 110°C, 0.5 h, 0.5 MPa, 催化剂(50 mg), n(MnO2/HMF) =0.55]
Fig.4 Product conversion and selectivity in aerobic oxidation of HMF over different MnO2 with DMF[reaction condition: 1 mmol HMF, 110°C, 0.5 h, 0.5 MPa, catalyst (50 mg), n(MnO2/HMF) =0.55]
图6 表面还原氧化处理对催化活性的影响[反应条件:1 mmol HMF, 110℃, 0.5 MPa O2,10 ml DMF, 1 h, n(MnO2/HMF) =0.55]
Fig.6 Effect of surface reduction oxidation treatment on catalytic activity [reaction conditions: 1 mmol HMF, 110℃, 0.5 MPa O2,10 ml DMF, 1 h, n(MnO2/HMF) =0.55]
1 | Zhang H L, Feng Z Y, Zhu Y K, et al. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371: 1-9. |
2 | Kong X, Zhu Y F, Fang Z, et al. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chemistry, 2018, 20(16): 3657-3682. |
3 | Tan J J, Cui J L, Zhu Y L, et al. Complete aqueous hydrogenation of 5-hydroxymethylfurfural at room temperature over bimetallic RuPd/graphene catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10670-10678. |
4 | Wang H L, Yang B, Zhang Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109612. |
5 | Tsilomelekis G, Josephson T R, Nikolakis V, et al. Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures[J]. ChemSusChem, 2014, 7(1): 117-126. |
6 | Lai J H, Zhou S L, Cheng F, et al. Efficient and selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic vanadium-based catalysts with air as oxidant[J]. Catalysis Letters, 2020, 150(5): 1301-1308. |
7 | Liu D, Chen B K, Li J, et al. Imidazole-functionalized polyoxometalate catalysts for the oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using atmospheric O2[J]. Inorganic Chemistry, 2021, 60(6): 3909-3916. |
8 | Wen S, Liu K, Tian Y, et al. Phosphorus-doped carbon supported vanadium phosphate oxides for catalytic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran[J]. Processes, 2020, 8(10): 1273. |
9 | Rodikova Y, Zhizhina E. Catalytic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using V-containing heteropoly acid catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1): 403-415. |
10 | Lai J H, Liu K, Zhou S L, et al. Selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran over VPO catalysts under atmospheric pressure[J]. RSC Advances, 2019, 9(25): 14242-14246. |
11 | Ghosh K, Molla R A, Iqubal M A, et al. Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2, 5-diformylfuran (DFF)[J]. Applied Catalysis A: General, 2016, 520: 44-52. |
12 | Zhao D Y, Rodriguez-Padron D, Triantafyllidis K S, et al. Microwave-assisted oxidation of hydroxymethyl furfural to added-value compounds over a ruthenium-based catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3091-3102. |
13 | Nie J F, Xie J H, Liu H C. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported Ru catalysts[J]. Journal of Catalysis, 2013, 301: 83-91. |
14 | Wang F, Yuan Z L, Liu B, et al. Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over RuⅢ-incorporated zirconium phosphate catalyst[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 181-185. |
15 | Lin K Y A, Oh W D, Zheng M W, et al. Aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran using manganese dioxide with different crystal structures: a comparative study[J]. Journal of Colloid and Interface Science, 2021, 592: 416-429. |
16 | Chen L F, Yang W, Gui Z Y, et al. MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran[J]. Catalysis Today, 2019, 319: 105-112. |
17 | Ke Q P, Jin Y X, Ruan F, et al. Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over nitrogen-doped manganese oxide catalysts[J]. Green Chemistry, 2019, 21(16): 4313-4318. |
18 | Liu B, Zhang Z H, Lv K, et al. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J]. Applied Catalysis A: General, 2014, 472: 64-71. |
19 | Liu H, Cao X J, Wei J N, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over Fe2O3-promoted MnO2 catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7812-7822. |
20 | Neaţu F, Petrea N, Petre R, et al. Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts[J]. Catalysis Today, 2016, 278: 66-73. |
21 | 聂俊芳. 5-羟甲基糠醛选择氧化合成2, 5-呋喃二甲醛的研究[D].北京:北京大学,2013. |
Nie J F. Synthesis of 2,5-furandialdehyde by selective oxidation of 5-hydroxymethylfurfural[D]. Beijing: Peking University, 2013. | |
22 | Makwana V D, Son Y C, Howell A R, et al. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study[J]. Journal of Catalysis, 2002, 210(1): 46-52. |
23 | Nie J F, Liu H C. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts[J]. Journal of Catalysis, 2014, 316: 57-66. |
24 | Selvakumar K, Senthil Kumar S M, Thangamuthu R, et al. Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21024-21036. |
25 | van Reijendam J W, Janssen M J. Polyenyl-substituted furans and thiophenes. A study of the electronic spectra(Ⅱ)[J]. Tetrahedron, 1970, 26(6): 1303-1310. |
26 | Rong S P, Zhang P Y, Liu F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8(4): 3435-3446. |
27 | Sun H, Liu Z G, Chen S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65. |
28 | Chen J H, Shen M Q, Wang X Q, et al. The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation[J]. Applied Catalysis B: Environmental, 2013, 134/135: 251-257. |
29 | Han X W, Li C Q, Liu X H, et al. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chemistry, 2017, 19(4): 996-1004. |
30 | Tang W X, Wu X F, Li D Y, et al. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: effect of calcination temperature and preparation method[J]. J. Mater. Chem. A, 2014, 2(8): 2544-2554. |
31 | Wu Y S, Lu Y, Song C J, et al. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catalysis Today, 2013, 201: 32-39. |
32 | Gui Z Y, Saravanamurugan S, Cao W R, et al. Highly selective aerobic oxidation of 5-hydroxymethyl furfural into 2,5-diformylfuran over Mn-Co binary oxides[J]. ChemistrySelect, 2017, 2(23): 6632-6639. |
33 | Chen L F, Lou F R, Cheng H Y, et al. Uniform heterostructured MnOx/MnCO3/Fe2O3 nanocomposites assembled in an ionic liquid for highly selective oxidation of 5-hydroxymethylfurfural[J]. New Journal of Chemistry, 2021, 45(27): 12050-12063. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[3] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[4] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[5] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[6] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[10] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[11] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[14] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||