化工学报 ›› 2022, Vol. 73 ›› Issue (2): 739-746.DOI: 10.11949/0438-1157.20211086
收稿日期:
2021-08-02
修回日期:
2021-10-26
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
李文英
作者简介:
贝鹏志(1993—),男,博士研究生,基金资助:
Received:
2021-08-02
Revised:
2021-10-26
Online:
2022-02-05
Published:
2022-02-18
Contact:
Wenying LI
摘要:
煤焦油物质丰富、组成复杂,其中,含杂原子的芳香族化合物以及稠环芳烃具有极高的工业应用价值,但是难以通过石化行业获取。如何“破坏”杂原子芳香族化合物和稠环芳烃间的缔合作用,是高效分离的关键和萃取剂选择难点。若对待分离体系中各物质之间的“缔合结构”有清晰的认识,便可根据不同的能量范围设计萃取剂。据此,基于分子力场分析,获得了氮/硫杂原子芳香族化合物色散作用能的范围,约为 -15~-70 kJ/mol,比照分析低共熔溶剂萃取氮/硫杂原子芳香族化合物研究动态,对增强分子间相互作用的调控手段归类,印证了可以根据待分离体系不同的能量范围来选择萃取剂,这种萃取剂选择方法可以作为分离杂原子芳香族化合物和稠环芳烃的一种新策略。
中图分类号:
贝鹏志, 李文英. 能量分解前提下萃取剂的选择策略[J]. 化工学报, 2022, 73(2): 739-746.
Pengzhi BEI, Wenying LI. An energy decomposition analysis-based extractant selection[J]. CIESC Journal, 2022, 73(2): 739-746.
相互作用 | 调控方法 |
---|---|
氢键 | 质子供体酸度 |
质子受体碱度 | |
结构规整程度 | |
操作温度 | |
π-π | 提供供电子基团 |
增大π-π相互作用表面积 | |
金属离子π络合作用 | |
电子云结构相似度 |
表1 萃取剂与氮/硫化合物相互作用的调控方法
Table 1 Regulation of interaction between extractants and nitrogen/sulfur aromatic compounds
相互作用 | 调控方法 |
---|---|
氢键 | 质子供体酸度 |
质子受体碱度 | |
结构规整程度 | |
操作温度 | |
π-π | 提供供电子基团 |
增大π-π相互作用表面积 | |
金属离子π络合作用 | |
电子云结构相似度 |
1 | 李文英, 慕海, 王伟, 等. 煤基粗油轻质组分定性定量分析现状与展望[J]. 化工进展, 2019, 38(1): 217-228. |
Li W Y, Mu H, Wang W, et al. Status quo and outlook of qualitative and quantitative analysis of light weight fractions of coal-based crude oil[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 217-228. | |
2 | 慕海. 以物料衡算为约束的煤基粗油定性定量研究[D]. 太原: 太原理工大学, 2018. |
Mu H. Qualitative and quantitative study on coal-based crude oil constrained by material balance[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
3 | 郭艳玲, 胡俊鸽, 周文涛, 等. 我国高温煤焦油深加工现状及发展趋势[J]. 现代化工, 2014, 34(8): 11-14. |
Guo Y L, Hu J G, Zhou W T, et al. Status and development of deep-processing high temperature coal tar in China[J]. Modern Chemical Industry, 2014, 34(8): 11-14. | |
4 | 马晓迅, 赵阳坤, 孙鸣, 等. 高温煤焦油利用技术研究进展[J]. 煤炭转化, 2020, 43(4): 1-11. |
Ma X X, Zhao Y K, Sun M, et al. Technical review on utilization technology of high temperature coal tar[J]. Coal Conversion, 2020, 43(4): 1-11. | |
5 | Lanke S K, Sekar N. Aggregation induced emissive carbazole-based push pull NLOphores: synthesis, photophysical properties and DFT studies[J]. Dyes and Pigments, 2016, 124: 82-92. |
6 | 毋亭亭. 溶剂结晶法粗蒽精制蒽和咔唑工艺改进[D]. 太原: 太原理工大学, 2013. |
Wu T T. Process improvement of refining anthracene and carbazole from crude anthracene by solvent crystallization method[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
7 | 张国威. 苯并噻吩和喹啉衍生物的合成研究[D]. 无锡: 江南大学, 2018. |
Zhang G W. The research on the synthesis of the derivatives of benzothiophene and quinoline[D]. Wuxi: Jiangnan University, 2018. | |
8 | Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12): 6415-6424. |
9 | Liu R H, Moffitt M, Winnik M A, et al. Energy transfer from phenanthrene to anthracene in a dye-labeled (ethylene-methyl acrylate) copolymer[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(22): 4169-4175. |
10 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
11 | Zimmerman J B, Anastas P T, Erythropel H C, et al. Designing for a green chemistry future[J]. Science, 2020, 367(6476): 397-400. |
12 | 易兰. 煤直接转化液体产物中芳香族化合物缔合结构解析与组分分离[D]. 杭州: 浙江大学, 2020. |
Yi L. Association structure analysis and component separation of aromatic compounds in liquid products from direct coal conversion[D]. Hangzhou: Zhejiang University, 2020. | |
13 | Farhod Chasib K. Extraction of phenolic pollutants (phenol and p-chlorophenol) from industrial wastewater[J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1549-1564. |
14 | Yi L, Feng J, Li W Y, et al. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7777-7783. |
15 | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
Yi L, Li W Y, Feng J. Application of ionic liquids and deep eutectic solvents in the separation of coal-based liquids[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2066-2078. | |
16 | Bei P Z, Liu H J, Zhang Y, et al. Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO2/N2 separation[J]. Environmental Science and Pollution Research, 2021, 28(1): 738-753. |
17 | Abbott A P, Capper G, Davies D L, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical Communications, 2001(19): 2010-2011. |
18 | Kučan K Z, Perković M, Cmrk K, et al. Betaine + (glycerol or ethylene glycol or propylene glycol) deep eutectic solvents for extractive purification of gasoline[J]. ChemistrySelect, 2018, 3(44): 12582-12590. |
19 | Warrag S E E, Darwish A S, Abuhatab F O S, et al. Combined extractive dearomatization, desulfurization, and denitrogenation of oil fuels using deep eutectic solvents: a parametric study[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11723-11733. |
20 | Warrag S E E, Alli R D, Kroon M C. Liquid-liquid equilibrium measurements for the extraction of pyridine and benzothiazole from n-alkanes using deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2019, 64(11): 4882-4890. |
21 | Lima F, Dave M, Silvestre A J D, et al. Concurrent desulfurization and denitrogenation of fuels using deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11341-11349. |
22 | Yan W W, Zong Z M, Li Z X, et al. Effective separation and purification of nitrogen-containing aromatics from the light portion of a high-temperature coal tar using choline chloride and malonic acid: experimental and molecular dynamics simulation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9464-9471. |
23 | Ali M C, Yang Q W, Fine A S, et al. Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents[J]. Green Chemistry, 2016, 18(1): 157-164. |
24 | Liu J, Li W S. Removal of both basic and non-basic N-compounds from diesel fuel with deep eutectic solvent[J]. Petroleum Science and Technology, 2019, 37(1): 21-27. |
25 | Li C P, Li D, Zou S S, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chemistry, 2013, 15(10): 2793-2799. |
26 | Li C P, Zhang J J, Li Z, et al. Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs)[J]. Green Chemistry, 2016, 18(13): 3789-3795. |
27 | Jiang W, Li H P, Wang C, et al. Synthesis of ionic-liquid-based deep eutectic solvents for extractive desulfurization of fuel[J]. Energy & Fuels, 2016, 30(10): 8164-8170. |
28 | Tang X D, Zhang Y F, Li J Song, et al. Deep extractive desulfurization with arenium ion deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4625-4632. |
29 | Yi L, Feng J, Gauthier M, et al. Effect of the addition of deep eutectic solvent to the anthracene separation[J]. Journal of Molecular Liquids, 2021, 339: 116762. |
30 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
31 | Kareem M A, Mjalli F S, Hashim M A, et al. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha[J]. Fluid Phase Equilibria, 2012, 333: 47-54. |
32 | Kareem M A, Mjalli F S, Hashim M A, et al. Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha[J]. The Journal of Chemical Thermodynamics, 2013, 65: 138-149. |
33 | Hou Y C, Li Z Y, Ren S H, et al. Separation of toluene from toluene/alkane mixtures with phosphonium salt based deep eutectic solvents[J]. Fuel Processing Technology, 2015, 135: 99-104. |
34 | Wang Y, Hou Y C, Wu W Z, et al. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents[J]. Green Chemistry, 2016, 18(10): 3089-3097. |
35 | Ma S T, Li J F, Li L M, et al. Liquid–liquid extraction of benzene and cyclohexane using sulfolane-based low transition temperature mixtures as solvents: experiments and simulation[J]. Energy & Fuels, 2018, 32(7): 8006-8015. |
36 | Mulyono S, Hizaddin H F, Alnashef I M, et al. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent — experiments and COSMO-RS prediction[J]. RSC Advances, 2014, 4(34): 17597. |
37 | 麻志浩. 高温煤焦油的精细分离及其组分的选择性催化转化[D]. 徐州: 中国矿业大学, 2020. |
Ma Z H. Fine separation of high temperature coal tar and selective catalytic conversion of its components[D]. Xuzhou: China University of Mining and Technology, 2020. | |
38 | Hizaddin H F, Ramalingam A, Hashim M A, et al. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3470-3487. |
39 | Radmard B, Dadmun M D. The accessibility of functional groups to intermolecular hydrogen bonding in polymer blends containing a liquid crystalline polymer[J]. Polymer, 2001, 42(4): 1591-1600. |
40 | Cockroft S L, Hunter C A, Lawson K R, et al. Electrostatic control of aromatic stacking interactions[J]. Journal of the American Chemical Society, 2005, 127(24): 8594-8595. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[9] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[12] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||