1 |
Alam T, Kim M H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 813-839.
|
2 |
Li H W, You R Q, Deng H W, et al. Heat transfer investigation in a rotating U-turn smooth channel with irregular cross-section [J]. International Journal of Heat and Mass Transfer, 2016, 96: 267-277.
|
3 |
Qiu L, Deng H W, Sun J N, et al. Pressure drop and heat transfer in rotating smooth square U-duct under high rotation numbers [J]. International Journal of Heat and Mass Transfer, 2013, 66: 543-552.
|
4 |
Wangnipparnto S, Tiansuwan J, Kiatsiriroat T, et al. Performance analysis of thermosyphon heat exchanger under electric field [J]. Energy Conversion and Management, 2003, 44(7): 1163-1175.
|
5 |
Tada Y, Yoshioka S, Takimoto A, et al. Heat transfer enhancement in a gas-solid suspension flow by applying electric field [J]. International Journal of Heat and Mass Transfer, 2016, 93: 778-787.
|
6 |
Li Q, Xuan Y M. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field [J]. Experimental Thermal and Fluid Science, 2009, 33(4): 591-596.
|
7 |
Goharkhah M, Salarian A, Ashjaee M, et al. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field [J]. Powder Technology, 2015, 274: 258-267.
|
8 |
Jin D X, Lee Y P, Lee D Y. Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel [J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3062-3071.
|
9 |
Akdag U, Komur M A, Akcay S. Prediction of heat transfer on a flat plate subjected to a transversely pulsating jet using artificial neural networks [J]. Applied Thermal Engineering, 2016, 100: 412-420.
|
10 |
Liu J Z, Gao J M, Gao T Y, et al. Heat transfer characteristics in steam-cooled rectangular channels with two opposite rib-roughened walls [J]. Applied Thermal Engineering, 2013, 50(1): 104-111.
|
11 |
Deo N S, Chander S, Saini J S. Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs [J]. Renewable Energy, 2016, 91: 484-500.
|
12 |
Thakur D S, Khan M K, Pathak M. Performance evaluation of solar air heater with novel hyperbolic rib geometry [J]. Renewable Energy, 2017, 105: 786-797.
|
13 |
Karabacak R, Yakar G. Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins [J]. Energy Conversion and Management, 2011, 52(8/9): 2785-2793.
|
14 |
Priyam A, Chand P. Thermal and thermohydraulic performance of wavy finned absorber solar air heater [J]. Solar Energy, 2016, 130: 250-259.
|
15 |
Tamna S, Skullong S, Thianpong C, et al. Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators [J]. Solar Energy, 2014, 110: 720-735.
|
16 |
Sadeghi O, Mohammed H A, Bakhtiari-Nejad M, et al. Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts [J]. International Communications in Heat and Mass Transfer, 2016, 71: 234-244.
|
17 |
San J Y, Huang W C, Chen C G. Experimental investigation on heat transfer and fluid friction correlations for circular tubes with coiled-wire inserts [J]. International Communications in Heat and Mass Transfer, 2015, 65: 8-14.
|
18 |
Wongcharee K, Eiamsa-Ard S. Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings [J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(2): 211-219.
|
19 |
Awais M, Bhuiyan A A. Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities [J]. Thermal Science and Engineering Progress, 2018, 5: 524-545.
|
20 |
Kotcioglu I, Caliskan S, Cansiz A, et al. Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator [J]. Energy, 2010, 35(9): 3686-3695.
|
21 |
Skullong S, Promvonge P, Thianpong C, et al. Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators [J]. Applied Thermal Engineering, 2016, 100: 611-620.
|
22 |
Khanjian A, Habchi C, Russeil S, et al. Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow [J]. International Journal of Thermal Sciences, 2017, 114: 1-14.
|
23 |
Akcayoglu A. Flow past confined delta-wing type vortex generators [J]. Experimental Thermal and Fluid Science, 2011, 35(1): 112-120.
|
24 |
Promvonge P, Jedsadaratanachai W, Kwankaomeng S, et al. 3D simulation of laminar flow and heat transfer in V-baffled square channel [J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 85-93.
|
25 |
武俊梅, 陶文铨. 纵向涡强化换热的数值研究及场协同原理分析[J]. 西安交通大学学报, 2006, 40(7): 757-761.
|
|
Wu J M, Tao W Q. Numerical analysis to vortex heat transfer enhancement based on field synergy principle [J]. Journal of Xi'an Jiaotong University, 2006, 40(7): 757-761.
|
26 |
Lu G F, Zhou G B. Numerical simulation on performances of plane and curved winglet - pair vortex generators in a rectangular channel and field synergy analysis [J]. International Journal of Thermal Sciences, 2016, 109: 323-333.
|
27 |
田林, 柏巍, 薛山虎, 等. 纵向涡发生器对矩形通道内流动换热的影响研究[J]. 工程热物理学报, 2013, 34(2): 324-327.
|
|
Tian L, Bai W, Xue S H, et al. Numerical study of influence of longitudinal vortex generator on flow and heat transfer in rectangular channel [J]. Journal of Engineering Thermophysics, 2013, 34(2): 324-327.
|
28 |
Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator(Part A): Verification of field synergy principle [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1179-1191.
|
29 |
Li Y X, Wang X, Zhang J, et al. Comparison and analysis of the arrangement of delta winglet pair vortex generators in a half coiled jacket for heat transfer enhancement [J]. International Journal of Heat and Mass Transfer, 2019, 129: 287-298.
|
30 |
车翠翠, 田茂诚. 圆管内置梯形翼片的流场特性PIV试验[J]. 化工学报, 2013, 64(11): 3976-3984.
|
|
Che C C, Tian M C. PIV experiment on flow disturbance characteristics of embedded trapezoid winglets in tube [J]. CIESC Journal, 2013, 64(11): 3976-3984.
|
31 |
Zhai C, Islam M D, Simmons R, et al. Heat transfer augmentation in a circular tube with delta winglet vortex generator pairs [J]. International Journal of Thermal Sciences, 2019, 140: 480-490.
|
32 |
Xu Y B, Islam M D, Kharoua N. Numerical study of winglets vortex generator effects on thermal performance in a circular pipe [J]. International Journal of Thermal Sciences, 2017, 112: 304-317.
|