化工学报 ›› 2022, Vol. 73 ›› Issue (3): 990-1007.doi: 10.11949/0438-1157.20211390

• 综述与专论 • 上一篇    下一篇

核壳纳米材料制备及其在CO/CO2热催化加氢中的应用

金科1,3(),王晨光1,3,马隆龙2,张琦2()   

  1. 1.中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广东 广州 510640
    2.东南大学能源与环境学院,能源热转换及其过程测控教育部重点实验室,江苏 南京 210096
    3.中国科学院大学,北京 100871
  • 收稿日期:2021-09-27 修回日期:2021-11-29 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 张琦 E-mail:jinke@ms.giec.ac.cn;zhangqiseu@seu.edu.cn
  • 作者简介:金科(1993—),男,博士研究生,jinke@ms.giec.ac.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB1501500);中国科学院战略性先导科技专项(XDA21060102);广东特支计划项目(2019TQ05L238);广东省珠江人才计划-本土创新科研人才项目(2017BT01N092)

Preparation of core-shell nanomaterials and their application in thermocatalytic hydrogenation of CO/CO2

Ke JIN1,3(),Chenguang WANG1,3,Longlong MA2,Qi ZHANG2()   

  1. 1.Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    2.Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
    3.University of Chinese Academy of Sciences, Beijing 100871, China
  • Received:2021-09-27 Revised:2021-11-29 Published:2022-03-15 Online:2022-03-14
  • Contact: Qi ZHANG E-mail:jinke@ms.giec.ac.cn;zhangqiseu@seu.edu.cn

摘要:

采用多种包覆方法制备的核壳纳米材料具有许多优于单一材料的性能,其独特的核壳结构可产生出色的协同作用和新特性,现在已经广泛用于催化、吸附、储能与转化、药物传递和光学等领域。在CO/CO2热催化加氢反应过程中,壳层包覆可对核体粒子表面进行修饰,如改变核体的表面电荷、官能团和反应特性等,从而提高核体的稳定性与分散性。核壳催化剂可形成封闭的内部微环境以富集反应物,提高反应速率和催化活性。部分核壳催化剂甚至还能实现接力催化,并提高体系内的能量利用率。主要介绍了核壳纳米材料的常用制备方法,不同类型壳层包覆的核壳催化剂在CO/CO2热催化加氢中的应用进展,并对该领域的未来发展进行了展望。

关键词: 核壳催化剂, CO, CO2, 费托合成, 加氢

Abstract:

The core-shell nanomaterials prepared by various coating methods have many properties that are better than those of a single material. Their unique core-shell structure can produce excellent synergistic effect and new characteristics, and have been widely used in catalysis, adsorption, energy storage and conversion, drug delivery and optics. In the process of CO/CO2 thermocatalytic hydrogenation, shell coating can modify the surface of core particles, such as changing the surface charge, functional groups and reaction characteristics of the core, so as to improve the stability and dispersion of the core. Core-shell catalysts can form a closed internal microenvironment to enrich reactants, improve reaction rate and catalytic activity. Some core-shell catalysts can even realize relay catalysis and improve energy utilization in the system. The common preparation methods of core-shell nanomaterials and the application progress of core-shell catalysts coated with different types of shells in CO/CO2 thermocatalytic hydrogenation were mainly introduced, and the future development in this field was prospected.

Key words: core-shell catalyst, CO, CO2, Fischer-Tropsch synthesis, hydrogenation

中图分类号: 

  • O 643.3
1 Zhou W, Cheng K, Kang J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
2 Henrici-Olivé G, Olivé S. The Fischer-Tropsch synthesis: molecular weight distribution of primary products and reaction mechanism[J]. Angewandte Chemie International Edition in English, 1976, 15(3): 136-141.
3 Jiao F, Li J, Pan X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
4 Ye R P, Ding J, Gong W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10: 5698.
5 Eren B, Zherebetskyy D, Patera L L, et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption[J]. Science, 2016, 351(6272): 475-478.
6 Prašnikar A, Pavlišič A, Ruiz-Zepeda F, et al. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13021-13029.
7 Lee J F, Chern W S, Lee M D, et al. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium[J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 511-515.
8 Xu Y F, Ma G Y, Bai J Y, et al. Yolk@Shell FeMn@Hollow HZSM-5 nanoreactor for directly converting syngas to aromatics[J]. ACS Catalysis, 2021, 11(8): 4476-4485.
9 Nie R F, Lei H, Pan S Y, et al. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425.
10 Zhang Q, Lee I, Joo J B, et al. Core-shell nanostructured catalysts[J]. Accounts of Chemical Research, 2013, 46(8): 1816-1824.
11 Su H Y, Tian Q, Hurd Price C A, et al. Nanoporous core@shell particles: design, preparation, applications in bioadsorption and biocatalysis[J]. Nano Today, 2020, 31: 100834.
12 仇媛, 王长真, 李海涛, 等. 单分散Co3O4@SiO2核壳催化剂的制备及N2O催化分解性能[J]. 化工学报, 2018, 69(4): 1493-1499.
Qiu Y, Wang C Z, Li H T, et al. Preparation of monodispersed core-shell Co3O4@SiO2 catalyst and its application in N2O catalytic decomposition[J]. CIESC Journal, 2018, 69(4): 1493-1499.
13 贾尚宁, 常娟娟, 李宁波, 等. 核壳结构磁性纳米复合物的合成及载药性能[J]. 化工学报, 2018, 69: 170-175.
Jia S N, Chang J J, Li N B, et al. Synthesis of magnetic nanoparticles with core-shell structure and its drug loading properties[J]. CIESC Journal, 2018, 69: 170-175.
14 Das S, Pérez-Ramírez J, Gong J L, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004.
15 Holgado M, Cintas A, Ibisate M, et al. Three-dimensional arrays formed by monodisperse TiO2 coated on SiO2 spheres[J]. Journal of Colloid and Interface Science, 2000, 229(1): 6-11.
16 Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. Journal of the American Chemical Society, 2008, 130(1): 28-29.
17 Liu J, Yang T, Wang D W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4: 2798.
18 Liu J, Qiao S Z, Liu H, et al. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie, 2011, 123(26): 6069-6073.
19 Li W, Yang J, Wu Z, et al. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures[J]. Journal of the American Chemical Society, 2012, 134(29): 11864-11867.
20 Li W, Yue Q, Deng Y H, et al. Ordered mesoporous materials based on interfacial assembly and engineering[J]. Advanced Materials, 2013, 25(37): 5129-5152.
21 Lou X W, Archer L A. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles[J]. Advanced Materials, 2008, 20(10): 1853-1858.
22 Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie, 2004, 116(5): 607-611.
23 Yu G B, Sun B, Pei Y, et al. Fe x O y @C spheres as an excellent catalyst for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2010, 132(3): 935-937.
24 Zhang Y L, Ma L L, Tu J L, et al. One-pot synthesis of promoted porous iron-based microspheres and its Fischer-Tropsch performance[J]. Applied Catalysis A: General, 2015, 499: 139-145.
25 Liu J, Sun Z K, Deng Y H, et al. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups[J]. Angewandte Chemie International Edition, 2009, 48(32): 5875-5879.
26 Tu J L, Yuan J J, Kang S M, et al. One-pot synthesis of carbon-coated Fe3O4 nanoparticles with tunable size for production of gasoline fuels[J]. New Journal of Chemistry, 2018, 42(13): 10861-10867.
27 Garcia-Torres J, Vallés E, Gómez E. Synthesis and characterization of Co@Ag core-shell nanoparticles[J]. Journal of Nanoparticle Research, 2010, 12(6): 2189-2199.
28 Almana N, Phivilay S P, Laveille P, et al. Design of a core-shell Pt-SiO2 catalyst in a reverse microemulsion system: Distinctive kinetics on CO oxidation at low temperature[J]. Journal of Catalysis, 2016, 340: 368-375.
29 Kim C D, Park C. Formation of Al2O3-graphite core shells versus growth time by using thermal chemical vapor deposition[J]. Journal of the Korean Physical Society, 2016, 69(5): 842-846.
30 Zhao Y X, Zhang Y, Li Y P, et al. A flexible chemical vapor deposition method to synthesize copper@carbon core-shell structured nanowires and the study of their structural electrical properties[J]. New Journal of Chemistry, 2012, 36(5): 1161.
31 Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.
32 Mayya K S, Gittins D I, Caruso F. Gold-titania core-shell nanoparticles by polyelectrolyte complexation with a titania precursor[J]. Chemistry of Materials, 2001, 13(11): 3833-3836.
33 Li H F, Gao S Y, Zheng Z L, et al. Bifunctional composite prepared using layer-by-layer assembly of polyelectrolyte-gold nanoparticle films on Fe3O4-silica core-shell microspheres[J]. Catalysis Science & Technology, 2011, 1(7): 1194.
34 Kandula S, Jeevanandam P. Synthesis of Cu2O@Ag polyhedral core-shell nanoparticles by a thermal decomposition approach for catalytic applications[J]. European Journal of Inorganic Chemistry, 2016, 2016(10): 1548-1557.
35 Dai S, Tissot A, Serre C. Recent progresses in metal-organic frameworks based core-shell composites[J]. Advanced Energy Materials, 2022, 12(4): 2100061.
36 Zeng X J, Yang B, Zhu L Y, et al. Structure evolution of Prussian blue analogues to CoFe@C core-shell nanocomposites with good microwave absorbing performances[J]. RSC Advances, 2016, 6(107): 105644-105652.
37 Danielis M, Colussi S, De Leitenburg C, et al. Outstanding methane oxidation performance of palladium-embedded ceria catalysts prepared by a one-step dry ball-milling method[J]. Angewandte Chemie, 2018, 130(32): 10369-10373.
38 Kuzovnikova L, Komogortsev S, Denisova E, et al. Structure and magnetism in ball-milled core-shell Al2O3@Co particles[J]. Materials Today: Proceedings, 2019, 12: 159-162.
39 Maleki A, Aghaei M. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell[J]. Ultrasonics Sonochemistry, 2017, 38: 585-589.
40 Chiu W, Khiew P, Cloke M, et al. Heterogeneous seeded growth: synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8212-8218.
41 Ma X X, Li Y X, Hussain I, et al. Core-shell structured nanoenergetic materials: preparation and fundamental properties[J]. Advanced Materials, 2020, 32(30): 2001291.
42 Mallik K, Mandal M, Pradhan N, et al. Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of "core-shell" type structures[J]. Nano Letters, 2001, 1(6): 319-322.
43 Li X L, Zeng Z Y, Hu B, et al. Surface-atom dependence of ZnO-supported Ag@Pd Core@Shell nanocatalysts in CO2 hydrogenation to CH3OH[J]. ChemCatChem, 2017, 9(6): 924-928.
44 Yang C, Zhao B, Gao R, et al. Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer-Tropsch synthesis catalyst[J]. ACS Catalysis, 2017, 7(9): 5661-5667.
45 Xie C L, Chen C, Yu Y, et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons[J]. Nano Letters, 2017, 17(6): 3798-3802.
46 Haghtalab A, Mosayebi A. Co@Ru nanoparticle with core-shell structure supported over γ-Al2O3 for Fischer-Tropsch synthesis[J]. International Journal of Hydrogen Energy, 2014, 39(33): 18882-18893.
47 Liang B L, Duan H M, Sun T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932.
48 Wu X, Ma H F, Zhang H T, et al. High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core-shell catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21350-21362.
49 Zhang Y L, Ma L L, Wang T J, et al. MnO2 coated Fe2O3 spindles designed for production of C 5 + hydrocarbons in Fischer-Tropsch synthesis[J]. Fuel, 2016, 177: 197-205.
50 Wang J, Xu Y F, Ma G Y, et al. Directly converting syngas to linear α-olefins over core-shell Fe3O4@MnO2 catalysts[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43578-43587.
51 Jiang J D, Wen C Y, Tian Z P, et al. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 2155-2162.
52 Tang C L, Liping L, Zhang L M, et al. High carbon-resistance Ni@CeO2 core-shell catalysts for dry reforming of methane[J]. Kinetics and Catalysis, 2017, 58(6): 800-808.
53 Tisseraud C, Comminges C, Habrioux A, et al. Cu-ZnO catalysts for CO2 hydrogenation to methanol: Morphology change induced by ZnO lixiviation and its impact on the active phase formation[J]. Molecular Catalysis, 2018, 446: 98-105.
54 Cui X J, Yan W J, Yang H H, et al. Preserving the active Cu-ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2661-2672.
55 Wang H, Wu B X, Cai Y, et al. Core-shell-structured Co-Z@TiO2 catalysts derived from ZIF-67 for efficient production of C5 + hydrocarbons in Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7900-7908.
56 Wang W B, Ding M Y, Ma L L, et al. Fe2O3 nanoparticles encapsulated in TiO2 nanotubes for Fischer-Tropsch synthesis: the confinement effect of nanotubes on the catalytic performance[J]. Fuel, 2016, 164: 347-351.
57 Salvatore K L, Deng K, Yue S, et al. Optimized microwave-based synthesis of thermally stable inverse catalytic core-shell motifs for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32591-32603.
58 Tian Z P, Wang C G, Si Z, et al. Product distributions of Fischer-Tropsch synthesis over core-shell catalysts: the effects of diverse shell thickness[J]. ChemistrySelect, 2018, 3(44): 12415-12423.
59 Zhang Y L, Wang T J, Ma L L, et al. Promotional effects of Mn on SiO2-encapsulated iron-based spindles for catalytic production of liquid hydrocarbons[J]. Journal of Catalysis, 2017, 350: 41-47.
60 Xu Y F, Wang J, Ma G Y, et al. Selective conversion of syngas to olefins-rich liquid fuels over core-shell FeMn@SiO2 catalysts[J]. Fuel, 2020, 275: 117884.
61 Cheng Q P, Tian Y, Lyu S S, et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J]. Nature Communications, 2018, 9(1): 3250.
62 Subramanian V, Cheng K, Lancelot C, et al. Nanoreactors: an efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6(3): 1785-1792.
63 Shi Z S, Tan Q Q, Wu D F. A novel Core-Shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE Journal, 2019, 65(3): 1047-1058.
64 Yang H Y, Gao P, Zhang C, et al. Core-shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Catalysis Communications, 2016, 84: 56-60.
65 Ding F S, Zhang A F, Liu M, et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances, 2014, 4(17): 8930.
66 Yu X F, Zhang J L, Wang X, et al. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Applied Catalysis B: Environmental, 2018, 232: 420-428.
67 Xu Y F, Li X Y, Gao J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613.
68 Tian Z P, Wang C G, Yue J, et al. Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon[J]. Catalysis Science & Technology, 2019, 9(11): 2728-2741.
69 Lyu S, Wang L, Li Z, et al. Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer-Tropsch synthesis conditions[J]. Nature Communications, 2020, 11(1): 1-8.
70 Qin H F, Kang S F, Wang Y G, et al. Lignin-based fabrication of Co@C core-shell nanoparticles as efficient catalyst for selective Fischer-Tropsch synthesis of C5 + compounds[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1240-1247.
71 Chen W, Pan X, Willinger M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137.
72 Chen W, Pan X, Bao X. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426.
73 Chen W, Fan Z, Pan X, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419.
74 Yang Z Q, Guo S J, Pan X L, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J]. Energy & Environmental Science, 2011, 4(11): 4500.
75 Chen X Q, Deng D H, Pan X L, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637.
76 Pan X L, Fan Z L, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511.
77 Ma G Y, Wang X Z, Xu Y F, et al. Enhanced conversion of syngas to gasoline-range hydrocarbons over carbon encapsulated bimetallic FeMn nanoparticles[J]. ACS Applied Energy Materials, 2018, 1(8): 4304-4312.
78 Qiu B, Yang C, Guo W H, et al. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks[J]. Journal of Materials Chemistry A, 2017, 5(17): 8081-8086.
79 Liu J H, Zhang A F, Jiang X, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4017-4023.
80 Ma C P, Zhang W, Chang Q, et al. θ-Fe3C dominated Fe@C core-shell catalysts for Fischer-Tropsch synthesis: roles of θ-Fe3C and carbon shell[J]. Journal of Catalysis, 2021, 393: 238-246.
81 Abelló S, Montané D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review[J]. ChemSusChem, 2011, 4(11): 1538-1556.
82 Qiu T, Wang L, Lv S, et al. SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins[J]. Fuel, 2017, 203: 811-816.
83 Chen J Y, Wang X, Wu D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: strategy for product distribution[J]. Fuel, 2019, 239: 44-52.
84 Jiang N, Yang G H, Zhang X F, et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications, 2011, 12(11): 951-954.
85 Wang C T, Zhang J, Qin G Q, et al. Direct conversion of syngas to ethanol within zeolite crystals[J]. Chem, 2020, 6(3): 646-657.
86 He J, Yoneyama Y, Xu B, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins[J]. Langmuir, 2005, 21(5): 1699-1702.
87 He J J, Liu Z L, Yoneyama Y, et al. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas[J]. Chemistry - A European Journal, 2006, 12(32): 8296-8304.
88 Yang G H, He J J, Yoneyama Y, et al. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins[J]. Applied Catalysis A: General, 2007, 329: 99-105.
89 Yang G H, Tan Y S, Han Y Z, et al. Increasing the shell thickness by controlling the core size of zeolite capsule catalyst: application in iso-paraffin direct synthesis[J]. Catalysis Communications, 2008, 9(15): 2520-2524.
90 Yang G H, He J J, Zhang Y, et al. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas[J]. Energy & Fuels, 2008, 22(3): 1463-1468.
91 Bao J, Yang G H, Okada C, et al. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas[J]. Applied Catalysis A: General, 2011, 394(1/2): 195-200.
92 Cui W G, Li Y T, Yu L, et al. Zeolite-encapsulated ultrasmall Cu/ZnO x nanoparticles for the hydrogenation of CO2 to methanol[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18693-18703.
93 Bao J, He J J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angewandte Chemie, 2008, 120(2): 359-362.
94 Li X G, He J J, Meng M, et al. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity[J]. Journal of Catalysis, 2009, 265(1): 26-34.
95 Lu P, Chen Q J, Yang G H, et al. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catalysis, 2020, 10(2): 1366-1374.
96 Amoo C C, Li M Q, Noreen A, et al. Fabricating Fe nanoparticles embedded in zeolite Y microcrystals as active catalysts for Fischer-Tropsch synthesis[J]. ACS Applied Nano Materials, 2020, 3(8): 8096-8103.
97 Liu H Y, Fu Y J, Li M Q, et al. Activated carbon templated synthesis of hierarchical zeolite Y-encapsulated iron catalysts for enhanced gasoline selectivity in CO hydrogenation[J]. Journal of Materials Chemistry A, 2021, 9(13): 8663-8673.
98 Yang G H, Thongkam M, Vitidsant T, et al. A double-shell capsule catalyst with core-shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas[J]. Catalysis Today, 2011, 171(1): 229-235.
99 Wang X X, Yang G H, Zhang J F, et al. Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation[J]. Chemical Communications, 2016, 52(46): 7352-7355.
100 Wang X X, Zeng C Y, Gong N N, et al. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline[J]. ACS Catalysis, 2021, 11(3): 1528-1547.
[1] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[2] 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006.
[3] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[4] 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713.
[5] 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492.
[6] 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053.
[7] 闫帅, 杨家宝, 龚岩, 郭庆华, 于广锁. CO2稀释对甲烷反扩散火焰结构的影响研究[J]. 化工学报, 2022, 73(3): 1335-1342.
[8] 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698.
[9] 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642.
[10] 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893.
[11] 董桂霖, 罗祖伟, 曹约强, 周静红, 李伟, 周兴贵. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240.
[12] 何婷, 林文胜. 基于余热利用的活化MDEA法脱除CO2的天然气液化系统[J]. 化工学报, 2021, 72(S1): 453-460.
[13] 刘增欣,王依军,郝春莲,刘秀萍. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553.
[14] 李沛昀, 李杨, 王文彬, 王文. 三角转子膨胀机在跨临界CO2制冷循环中的应用分析[J]. 化工学报, 2021, 72(S1): 161-169.
[15] 吴迪, 胡斌, 王如竹, 余京京, 林欣毅, 李子亮. 水工质热泵多种循环的理论研究与性能对比[J]. 化工学报, 2021, 72(S1): 236-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!