化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1883-1893.DOI: 10.11949/0438-1157.20211810
收稿日期:
2021-12-23
修回日期:
2022-03-03
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
许映杰
作者简介:
付雪(1995—),女,硕士研究生,基金资助:
Xue FU(),Tingting CHEN,Tingting CHEN,Yingjie XU()
Received:
2021-12-23
Revised:
2022-03-03
Online:
2022-05-05
Published:
2022-05-24
Contact:
Yingjie XU
摘要:
离子液体(ILs)具有优异的导电能力,其电导性质不仅是电化学应用的基础,而且广泛用于研究ILs溶液热力学性质与微观结构。本文首先总结了近年来实验测定法在研究纯ILs、ILs+溶剂和ILs+ILs体系电导率(κ)或摩尔电导率(Λ)等方面取得的进展,详细讨论了ILs结构、ILs浓度、温度等因素对体系κ或Λ的影响,并结合溶液热力学模型分析了ILs κ或Λ的变化规律。在此基础上,重点介绍了电导性质在研究纯ILs的离子率以及ILs+溶剂体系微观结构和相互作用方面的应用及进展。最后,对ILs电导性质研究与应用提出了几点建议。
中图分类号:
付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids[J]. CIESC Journal, 2022, 73(5): 1883-1893.
1 | Rogers R D, Seddon K R. Ionic liquids-solvents of the future? [J]. Science, 2003, 302(5646): 792-793. |
2 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
3 | Zhang X P, Zhang X C, Dong H F, et al. Carbon capture with ionic liquids: overview and progress [J]. Energy & Environmental Science, 2012, 5(5): 6668-6681. |
4 | Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520: 324-328. |
5 | Amarasekara A S. Acidic ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6133-6183. |
6 | Philippi F, Welton T. Targeted modifications in ionic liquids-from understanding to design[J]. Physical Chemistry Chemical Physics, 2021, 23(12): 6993-7021. |
7 | Liu J J, Xu Y J. NO x absorption and conversion by ionic liquids[J]. Journal of Hazardous Materials, 2021, 409: 124503. |
8 | 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147. |
Liu J J, Fu X, Xu Y J. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147. | |
9 | Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2[J]. Chemical Reviews, 2011, 111(5): 3508-3576. |
10 | Vogl T, Menne S, Kühnel R S, et al. The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications[J]. Journal of Materials Chemistry A, 2014, 2(22): 8258-8265. |
11 | MacFarlane D R, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250. |
12 | Forse A C, Griffin J M, Merlet C, et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors[J]. Journal of the American Chemical Society, 2015, 137(22): 7231-7242. |
13 | Papović S, Cvjetićanin N, Gadžurić S, et al. Physicochemical and electrochemical characterisation of imidazolium based IL + GBL mixtures as electrolytes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(41): 28139-28152. |
14 | Ahmed F, Rahman M M, Sutradhar S C, et al. Synthesis of an imidazolium functionalized imide based electrolyte salt and its electrochemical performance enhancement with additives in Li-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 178-185. |
15 | Zhu N, Zhang K, Wu F, et al. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries[J]. Energy Material Advances, 2021, 2021: 1-29. |
16 | Haque M, Li Q, Rigato C, et al. Identification of self-discharge mechanisms of ionic liquid electrolyte based supercapacitor under high-temperature operation [J]. Journal of Power Sources, 2021, 485: 229328. |
17 | Boruń A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: a review[J]. Journal of Molecular Liquids, 2019, 276: 214-224. |
18 | Feng J Z, Wang Y, Xu Y T, et al. Ion regulation of ionic liquid electrolytes for supercapacitors[J]. Energy & Environmental Science, 2021, 14(5): 2859-2882. |
19 | Yue K, Zhai C X, Gu S N, et al. Performance-enhanced lithium metal batteries through ionic liquid based electrolytes and mechanism research derived by density functional theory calculations[J]. Electrochimica Acta, 2021, 368: 137535. |
20 | Feng G, Chen M, Bi S, et al. Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox[J]. Physical Review X, 2019, 9(2): 021024. |
21 | Fayyaz K, Jafary S, Bakhshi P, et al. Accurate prediction of electrical conductivity of ionic liquids + propylene carbonate binary mixtures[J]. Journal of Molecular Liquids, 2019, 279: 400-410. |
22 | Zhu X, Song M L, Wang S H, et al. Understanding the effect of molecular solvents on the microscopic network of DBU imidazole ionic liquid[J]. Journal of Molecular Liquids, 2019, 276: 325-333. |
23 | Nilsson-Hallén J, Ahlström B, Marczewski M, et al. Ionic liquids: a simple model to predict ion conductivity based on DFT derived physical parameters[J]. Frontiers in Chemistry, 2019, 7: 126. |
24 | 李春喜. 离子液体的溶液热力学模型研究进展[J]. 化工学报, 2020, 71(1): 81-91. |
Li C X. Recent advances in thermodynamic modelling of ionic liquid solutions[J]. CIESC Journal, 2020, 71(1): 81-91. | |
25 | 张先明, 胡玉峰, 杨振钰, 等. 离子液体的黏度与其扩散系数和电导率的新型关系方程[J]. 中国科学: 化学, 2014, 44(6): 1034-1040. |
Zhang X M, Hu Y F, Yang Z Y, et al. New relations between viscosity and self-diffusion coefficient or conductivity of ionic liquids[J]. Scientia Sinica Chimica, 2014, 44(6): 1034-1040. | |
26 | Song F, Xiao Y J, An S H, et al. Prediction of infinite dilution molar conductivity for unconventional ions: a quantitative structure-property relationship study[J]. Industrial & Engineering Chemistry Research, 2021, 60(40): 14625-14634. |
27 | Köddermann T, Klembt S, Klasen D, et al. The effect of neutral ion aggregate formation on the electrical conductivity of an ionic liquid and its mixtures with chloroform[J]. ChemPhysChem, 2012, 13(7): 1748-1752. |
28 | Chen Y F, Hu Y F, Yang Z Y, et al. Prediction of density, viscosity, and conductivity of the ternary aqueous solutions of piperidinium-based ionic liquids at different temperatures and atmospheric pressure using the data of their binary subsystems[J]. Fluid Phase Equilibria, 2014, 383: 55-71. |
29 | Pal A, Yadav S. Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behaviour of imidazolium based surface active ionic liquid in aqueous solution[J]. Journal of Molecular Liquids, 2017, 246: 342-349. |
30 | Hou M Y, Xu Y J, Han Y J, et al. Thermodynamic properties of aqueous solutions of two ammonium-based protic ionic liquids at 298.15 K[J]. Journal of Molecular Liquids, 2013, 178: 149-155. |
31 | Shekaari H, Jebali F. Densities and electrical conductances of amino acids+ ionic liquid ([HMIm]Br) + H2O mixtures at 298.15 K[J]. Fluid Phase Equilibria, 2010, 295(1): 68-75. |
32 | Bešter-Rogač M, Hunger J, Stoppa A, et al. Molar conductivities and association constants of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO[J]. Journal of Chemical & Engineering Data, 2010, 55(5): 1799-1803. |
33 | Wang J J, Wang H Y, Zhang S L, et al. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n=4, 6, 8, 10, 12) in aqueous solutions[J]. The Journal of Physical Chemistry B, 2007, 111(22): 6181-6188. |
34 | Guo L P, Wang C M, Luo X Y, et al. Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide[J]. Chemical Communications, 2010, 46(32): 5960-5962. |
35 | Sangoro J R, Kremer F. Charge transport and glassy dynamics in ionic liquids[J]. Accounts of Chemical Research, 2012, 45(4): 525-532. |
36 | Nancarrow P, Al-Othman A, Mital D K, et al. Comprehensive analysis and correlation of ionic liquid conductivity data for energy applications[J]. Energy, 2021, 220: 119761. |
37 | Sangoro J R, Serghei A, Naumov S, et al. Charge transport and mass transport in imidazolium-based ionic liquids[J]. Physical Review E, 2008, 77(5): 051202. |
38 | 王方惠,李春喜, 孟洪, 等. 离子液体在水、乙醇及其混合物中的电导率测定[J]. 北京化工大学学报(自然科学版), 2006, 33(6):17-21. |
Wang F H, Li C X, Meng H, et al. Determination of conductivity of ionic liquids in water or ethanol and their mixtures[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2006, 33(6): 17-21. | |
39 | Hou H Y, Jiao B J, Li Q Z, et al. Physicochemical properties, 1H-NMR, ab initio calculations and molecular interaction in binary mixtures of N-methylimidazole with methanol[J]. Journal of Solution Chemistry, 2018, 47(11): 1875-1901. |
40 | Das S, Dutta T, Borah R. Comparative study of the physical and electrochemical behavior of direct N-SO3H functionalized 1, 3-disulfo-2-alkyl-imidazolium trifluoroacetate ionic liquids in molecular solvents[J]. Journal of Molecular Liquids, 2019, 289: 111099. |
41 | Mou L, Chai Y Y, Yang G Z, et al. Density and viscosity of four binary mixtures of [C2mmim][NTf2]/[C4mmim][NTf2] + dimethyl carbonate/diethyl carbonate[J]. The Journal of Chemical Thermodynamics, 2019, 130: 183-191. |
42 | Rofika R N S, Honggowiranto W, Jodi H, et al. The effect of acetonitrile as an additive on the ionic conductivity of imidazolium-based ionic liquid electrolyte and charge-discharge capacity of its Li-ion battery[J]. Ionics, 2019, 25(8): 3661-3671. |
43 | Stoppa A, Buchner R, Hefter G. How ideal are binary mixtures of room-temperature ionic liquids? [J]. Journal of Molecular Liquids, 2010, 153(1): 46-51. |
44 | Niedermeyer H, Hallett J P, Villar-Garcia I J, et al. Mixtures of ionic liquids[J]. Chemical Society Reviews, 2012, 41(23): 7780-7802. |
45 | Chatel G, Pereira J F B, Debbeti V, et al. Mixing ionic liquids:"simple mixtures" or "double salts"? [J]. Green Chemistry, 2014, 16(4): 2051-2083. |
46 | Kapoor U, Shah J K. Thermophysical properties of imidazolium-based binary ionic liquid mixtures using molecular dynamics simulations[J]. Journal of Chemical & Engineering Data, 2018, 63(7): 2512-2521. |
47 | Thawarkar S, Khupse N D, Shinde D R, et al. Understanding the behavior of mixtures of protic-aprotic and protic-protic ionic liquids: conductivity, viscosity, diffusion coefficient and ionicity[J]. Journal of Molecular Liquids, 2019, 276: 986-994. |
48 | Khan I A, Shah F U. Fluorine-free ionic liquid-based electrolyte for supercapacitors operating at elevated temperatures[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10212-10221. |
49 | Liang L, Yuan W F, Chen X H, et al. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly (ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries[J]. Chemical Engineering Journal, 2021, 421: 130000. |
50 | Zhang Y, Li T, Wu Z K, et al. Synthesis and thermophysical properties of imidazolate-based ionic liquids: influences of different cations and anions[J]. The Journal of Chemical Thermodynamics, 2014, 74: 209-215. |
51 | 侯海云, 黄银蓉, 王升泽, 等. 咪唑醋酸盐的制备和物理化学性质及其水和乙醇溶液的电导率[J]. 物理化学学报, 2011, 27(11): 2512-2520. |
Hou H Y, Huang Y R, Wang S Z, et al. Preparation and physicochemical properties of imidazolium acetates and the conductivities of their aqueous and ethanol solutions[J]. Acta Physico-Chimica Sinica, 2011, 27(11): 2512-2520. | |
52 | Pandit S A, Rather M A, Bhat S A, et al. Influence of the anion on the equilibrium and transport properties of 1-butyl-3-methylimidazolium based room temperature ionic liquids[J]. Journal of Solution Chemistry, 2016, 45(12): 1641-1658. |
53 | Yu Y H, Soriano A N, Li M H. Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids[J]. Thermochimica Acta, 2009, 482(1/2): 42-48. |
54 | Rodil E, Arce A, Arce A, et al. Measurements of the density, refractive index, electrical conductivity, thermal conductivity and dynamic viscosity for tributylmethylphosphonium and methylsulfate based ionic liquids[J]. Thermochimica Acta, 2018, 664: 81-90. |
55 | Zheng Y, Zheng Y, Wang Q J, et al. Density, viscosity, and electrical conductivity of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 480-493. |
56 | Mbondo T B E, Sarraute S, Traïkia M, et al. Transport properties and ionic association in pure imidazolium-based ionic liquids as a function of temperature[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1747-1754. |
57 | Grishina E P, Kudryakova N O, Ramenskaya L M, et al. The temperature effect on the transport properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids[J]. Russian Journal of Physical Chemistry A, 2018, 92(4): 724-729. |
58 | 宁汇, 侯民强, 杨德重, 等. 二元混合离子液体的电导率与离子间的缔合作用[J]. 物理化学学报, 2013, 29(10): 2107-2113. |
Ning H, Hou M Q, Yang D Z, et al. Ionic association in binary ionic liquids by conductivity[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2107-2113. | |
59 | Vila J, Varela L M, Cabeza O. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids[J]. Electrochimica Acta, 2007, 52(26): 7413-7417 |
60 | Nahra M, Chainet E, Svecova L, et al. Reliability of Arrhenius and several VTF laws to describe the effect of TaF5 addition onto the transport properties of 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide[J]. Fluid Phase Equilibria, 2016, 415: 101-109. |
61 | Harris K R. On the use of the Angell-Walden equation to determine the "ionicity" of molten salts and ionic liquids[J]. The Journal of Physical Chemistry B, 2019, 123(32): 7014-7023. |
62 | Liu Q S, Yan P F, Yang M, et al. Dynamic viscosity and conductivity of ionic liquids [C n py][NTf2] (n=2, 4, 5)[J]. Acta Physico-Chimica Sinica, 2011, 27(12): 2762-2766. |
63 | MacFarlane D R, Forsyth M, Izgorodina E I, et al. On the concept of ionicity in ionic liquids[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 4962-4967. |
64 | 邓玉艳, 陈恺, 姚加, 等. 质子型离子液体离子率的研究进展[J]. 中国科学: 化学, 2019, 49(7): 940-945. |
Deng Y Y, Chen K Z, Yao J, et al. Progress in the study of ionicity of protic ionic liquids[J]. Scientia Sinica Chimica, 2019, 49(7): 940-945. | |
65 | Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical properties and structures of room temperature ionic liquids (2): Variation of alkyl chain length in imidazolium cation[J]. The Journal of Physical Chemistry B, 2005, 109(13): 6103-6110. |
66 | Miran M S, Kinoshita H, Yasuda T, et al. Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids[J]. Physical Chemistry Chemical Physics, 2012, 14(15): 5178-5186. |
67 | Yasuda T, Kinoshita H, Miran M S, et al.Comparative study on physicochemical properties of protic ionic liquids based on allylammonium and propylammonium cations[J]. Journal of Chemical & Engineering Data, 2013, 58(10): 2724-2732. |
68 | Shen M M, Zhang Y Y, Chen K Z, et al. Ionicity of protic ionic liquid: quantitative measurement by spectroscopic methods[J]. The Journal of Physical Chemistry B, 2017, 121(6): 1372-1376. |
69 | Deng Y Y, Yao J, Li H R. Effects of ionicity and chain structure on the physicochemical properties of protic ionic liquids[J]. AIChE Journal, 2020, 66(10): e16982. |
70 | Chen K Z, Wang Y T, Yao J, et al. Equilibrium in protic ionic liquids: the degree of proton transfer and thermodynamic properties[J]. The Journal of Physical Chemistry B, 2018, 122(1): 309-315. |
71 | Kasprzak D, Stępniak I, Galiński M. Acetate-and lactate-based ionic liquids: synthesis, characterisation and electrochemical properties[J]. Journal of Molecular Liquids, 2018, 264: 233-241. |
72 | Ghalami-Choobar B, Fallahkar T N. Thermophysical properties of 1-ethyl-3-methylimidazolium bromide ionic liquid in water + ethylene carbonate mixtures at T=(298.2, 308.2 and 318.2) K[J]. Fluid Phase Equilibria, 2019, 49: 42-60. |
73 | Boruń A, Bald A. Ionic association and conductance of [emim][BF 4] and [bmim][BF4] in 1-butanol in a wide range of temperature[J]. The Journal of Chemical Thermodynamics, 2016, 96: 175-180. |
74 | Boruń A. Conductometric studies of [emim][BF4] and [bmim][BF 4] in propan-2-ol. Association of ionic liquids in alcohols[J]. Journal of Molecular Liquids, 2017, 240: 717-722. |
75 | Boruń A, Bald A. Conductometric studies of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate in 1-propanol at temperatures from (283.15 to 318.15) K[J]. International Journal of Electrochemical Science, 2014, 9: 2790-2804. |
76 | Boruń A, Bald A. Conductance and ionic association of imidazolium-based ionic liquids in N, N-dimethylacetamide[J]. Journal of Chemical & Engineering Data, 2016, 61(11): 3788-3793. |
77 | Boruń A, Bald A. Conductometric studies of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate in N, N-dimethylformamide at temperatures from (283.15 to 318.15) K[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 475-481. |
78 | Boruń A, Fernandez C, Bald A. Conductance studies of aqueous ionic liquids solutions [emim][BF4] and [bmim][BF4] at temperatures from (283.15 to 318.15) K[J]. International Journal of Electrochemical Science, 2015, 10(3): 2120-2129. |
79 | Boruń A, Bald A. Ionic association and conductance of ionic liquids in dichloromethane at temperatures from 278.15 to 303.15 K[J]. Ionics, 2016, 22(6): 859-867. |
80 | Boruń A, Bald A. Triple ion formation in solutions of [emim][BF 4] and [bmim][BF4] in dichloromethane at various temperatures. A new method of analysis of conductivity data[J]. International Journal of Electrochemical Science, 2016, 11: 7714-7725. |
81 | Li W J, Han B X, Tao R T, et al. Measurement and correlation of the ionic conductivity of ionic liquid-molecular solvent solutions[J]. Chinese Journal of Chemistry, 2007, 25(9): 1349-1356. |
82 | Zhu A L, Wang J J, Han L J, et al. Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes[J]. Chemical Engineering Journal, 2009, 147(1): 27-35. |
83 | Every H, Bishop A G, Forsyth M, et al. Ion diffusion in molten salt mixtures[J]. Electrochimica Acta, 2000, 45(8/9): 1279-1284. |
84 | Martel R W, Kraus C A. The association of ions in dioxane-water mixtures at 25 degrees[J]. PNAS, 1955, 41: 9-20. |
85 | Fuoss R M. Ionic association (Ⅲ): The equilibrium between ion pairs and free ions[J]. Journal of the American Chemical Society, 1958, 80(19): 5059-5061. |
86 | Stoppa A, Hunger J, Buchner R. Conductivities of binary mixtures of ionic liquids with polar solvents[J]. Journal of Chemical & Engineering Data, 2009, 54(2): 472-479. |
87 | Casteel J F, Amis E S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system[J]. Journal of Chemical & Engineering Data, 1972, 17(1): 55-59. |
88 | Zhang Q G, Sun S S, Pitula S, et al. Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4659-4664. |
89 | Xu Y J. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures[J]. The Journal of Chemical Thermodynamics, 2013, 64: 126-133. |
90 | Zhang S N, Wang Y T, Wang X Y, et al. Physicochemical properties of the binary mixtures of CuII-containing chelate-based ionic liquids with linear alcohols[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 897-904. |
91 | Xu L, Cui X B, Zhang Y, et al. Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone[J]. Electrochimica Acta, 2015, 174: 900-907. |
92 | Burrell G L, Burgar I M, Gong Q X, et al. NMR relaxation and self-diffusion study at high and low magnetic fields of ionic association in protic ionic liquids[J]. The Journal of Physical Chemistry B, 2010, 114(35): 11436-11443. |
93 | Shekaari H, Mousavi S S. Conductometric studies of aqueous ionic liquids, 1-alkyl-3-methylimidazolium halide, solutions at T=298.15-328.15 K[J]. Fluid Phase Equilibria, 2009, 286(2): 120-126. |
94 | Zhang Q G, Liu D Y, Li Q, et al. Thermodynamic properties, excess properties, and molecular interactions of ionic liquids 1-cyanopropyl-3-methyl-imidazolium bis(fluorosulfonyl)imide/trifluoromethanesulfonate and binary systems containing acetonitrile[J]. Journal of Molecular Liquids, 2018, 268: 770-780. |
95 | Zhang Q G, Liu D Y, Li Q, et al. Density, electrical conductivity, dynamic viscosity, excess properties, and molecular interactions of ionic liquid 1-cyanopropyl-3-methylimidazolium tetrafluoroborate and binary system with acetonitrile[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1256-1265. |
96 | Wang H Y, Wang J J, Zhang S L, et al. Ionic association of the ionic liquids [C4mim][BF4], [C4mim][PF6], and [C n mim]Br in molecular solvents[J]. ChemPhysChem, 2009, 10(14): 2516-2523. |
97 | Chen J Y, Chen L X, Lu Y Q, et al. Physicochemical properties of aqueous solution of 1-methylimidazolium acetate ionic liquid at several temperatures[J]. Journal of Molecular Liquids, 2014, 197: 374-380. |
98 | Vila J, Rilo E, Segade L, et al. Electrical conductivity of aqueous solutions of aluminum salts[J]. Physical Review E, 2005, 71(3): 031201. |
99 | Annat G, Forsyth M, MacFarlane D R. Ionic liquid mixtures-variations in physical properties and their origins in molecular structure[J]. The Journal of Physical Chemistry B, 2012, 116(28): 8251-8258. |
100 | Castiglione F, Raos G, Appetecchi G B, et al. Blending ionic liquids: how physico-chemical properties change[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1784-1792. |
101 | Fletcher K, Baker S, Baker G, et al. Probing solute and solvent interactions within binary ionic liquid mixtures[J]. New Journal of Chemistry, 2003, 27(12): 1706-1712. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[5] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[15] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||