9 |
Wang Y J, Alonso J M, Ruan X. A review of LED drivers and related technologies[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5754-5765.
|
10 |
Castro I, Vazquez A, Arias M, et al. A review on flicker-free AC-DC LED drivers for single-phase and three-phase AC power grids[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10035-10057.
|
11 |
Zhu Y, Wang B W, Li Z Y, et al. A high-efficiency wavelength-tunable monolayer LED with hybrid continuous-pulsed injection[J]. Advanced Materials, 2021, 33(29): 1-9.
|
12 |
Sun C C, Ma S H, Nguyen Q K. Advanced LED solid-state lighting optics[J]. Crystals, 2020, 10(9): 1-3.
|
13 |
Pulli T, Dönsberg T, Poikonen T, et al. Advantages of white LED lamps and new detector technology in photometry[J]. Light: Science and Applications, 2015, 4: 1-7.
|
14 |
Pagac M, Hajnys J, Ma Q P, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing[J]. Polymers, 2021, 13(4): 1-20.
|
15 |
Peng X, Zhu D, Xiao P. Naphthoquinone derivatives: naturally derived molecules as blue-light-sensitive photoinitiators of photopolymerization[J]. European Polymer Journal, 2020, 127:109569.
|
16 |
Tang L Q, Nie J, Zhu X Q. A high performance phenyl-free LED photoinitiator for cationic or hybrid photopolymerization and its application in LED cationic 3D printing[J]. Polymer Chemistry, 2020, 11(16): 2855-2863.
|
17 |
Romanyk D L, Yu H, Grotski M, et al. In situ measurement of dental resin-based composite volumetric shrinkage and temperature effects using in-fibre bragg grating methods[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95: 89-95.
|
18 |
Jongsma L A, Kleverlaan C J. Influence of temperature on volumetric shrinkage and contraction stress of dental composites[J]. Dental Materials, 2015, 31(6): 721-725.
|
19 |
Koseki K, Sakamaki H, Jeong K M. In situ measurement of shrinkage behavior of photopolymers[J]. Journal of Photopolymer Science and Technology, 2013, 26(4): 57-572.
|
20 |
Stansbury J W, Trujillo-Lemon M, Lu H, et al. Conversion-dependent shrinkage stress and strain in dental resins and composites[J]. Dental Materials, 2005, 21(1): 56-67.
|
21 |
Alster D, Feilzer A J, de Gee A J, et al. Polymerization contraction stress in thin resin composite layers as a function of layer thickness[J]. Dental Materials, 1997, 13(3): 146-150.
|
22 |
Zhang W, Dong H N, Zhang T, et al. The effect of monomer structures on photopolymerization kinetics and volume shrinkage behavior for plasma display panel barrier rib[J]. Journal of Applied Polymer Science, 2012, 125(1): 77-87.
|
1 |
Dietlin C, Trinh T T, Schweizer S, et al. Rational design of acyldiphenylphosphine oxides as photoinitiators of radical polymerization[J]. Macromolecules, 2019, 52(20): 7886-7893.
|
2 |
Nohut S, Schwentenwein M. Vat photopolymerization additive manufacturing of functionally graded materials: a review[J]. Journal of Manufacturing and Materials Processing, 2022, 6(1): 1-24.
|
3 |
Sun K, Xiao P, Dumur F, et al. Organic dye-based photoinitiating systems for visible-light-induced photopolymerization[J]. Journal of Polymer Science, 2021, 59: 1338-1389.
|
4 |
Layani M, Wang X, Magdassi S. Novel materials for 3D printing by photopolymerization[J]. Advanced Materials, 2018, 30(41): 1-7.
|
5 |
Xiong P, Hu J Y. Decomposition of acetaminophen (Ace) using TiO2/UVA/LED system[J]. Catalysis Today, 2017, 282: 48-56.
|
6 |
Selin H, Keane S E, Wang S, et al. Linking science and policy to support the implementation of the minamata convention on mercury[J]. Ambio, 2018, 47(2): 198-215.
|
7 |
Coulter M A. Minamata convention on mercury[J]. International Legal Materials, 2016, 55(3): 582-616.
|
8 |
Jo W K, Tayade R J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2073-2084.
|
23 |
Chen C, Han J Y, Sun F. Gradient polymer networks formed by photopolymerization with self-floating polysiloxane-containing nanogel[J]. Polymers for Advanced Technologies, 2017, 28(3): 312-318.
|
24 |
Han J Y, Jiang S L, Gao Y J, et al. Intramolecular-initiating photopolymerization behavior of nanogel with capability of reducing shrinkage[J]. Journal of Materials Chemistry C, 2016, 4(45): 10675-10683.
|
25 |
Chen C, Li M, Gao Y, et al. A study of nanogels with different polysiloxane chain lengths for photopolymerization stress reduction and modification of polymer networks properties[J]. RSC Advances, 2015, 5(43): 33729-33736.
|
26 |
Chen J T, Jiang S L, Gao Y J, et al. Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide bond reactions[J]. Journal of Materials Science, 2018, 53(23): 16169-16181.
|
27 |
Zhang M L, Jiang S L, Gao Y J, et al. Design of a disulfide bond-containing photoresist with extremely low volume shrinkage and excellent degradation ability for UV-nanoimprinting lithography[J]. Chemical Engineering Journal, 2020, 390: 124625.
|
28 |
Zhang M L, Jiang S L, Gao Y J, et al. UV-nanoimprinting lithography photoresists with no photoinitiator and low polymerization shrinkage[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7564-7574.
|
29 |
Tehfe M A, Mondal S, Nechab M, et al. New thiols for photoinitiator-free thiol-acrylate polymerization[J]. Macromolecular Chemistry and Physics, 2013, 214(12): 1302-1308.
|
30 |
Buettner G R. Spin Trapping: ESR parameters of spin adducts 1474 1528V[J]. Free Radical Biology and Medicine, 1987, 3(4): 259-303.
|