1 |
胡𬍛元, 时铭显. 蜗壳式旋风分离器全空间三维时均流场的结构[J]. 化工学报, 2003, 54(4): 549-556.
|
|
Hu L Y, Shi M X. Three-dimensional time-averaged flow structure in cyclone separator with volute inlet[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 549-556.
|
2 |
Hoekstra A J, Derksen J J, van den Akker H E A. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999, 54(13/14): 2055-2065.
|
3 |
Hu L Y, Zhou L X, Zhang J, et al. Studies on strongly swirling flows in the full space of a volute cyclone separator[J]. AIChE Journal, 2005, 51(3): 740-749.
|
4 |
Hoffmann A C, Stein L E. Gas Cyclones and Swirl Tubes: Principles, Design and Operation[M]. Berlin: Springer-Verlag, 2002.
|
5 |
Cortés C, Gil A. Modeling the gas and particle flow inside cyclone separators[J]. Progress in Energy and Combustion Science, 2007, 33(5): 409-452.
|
6 |
蔡香丽, 杨智勇, 王菁, 等. 旋风分离器气相旋转流流场动态特性的研究进展[J]. 化工进展, 2019, 38(11): 4805-4814.
|
|
Cai X L, Yang Z Y, Wang J, et al. Research progress on dynamic characteristics of swirling flow in a cyclone[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4805-4814.
|
7 |
Dong S J, Jiang Y C, Jin R Z, et al. Numerical study of vortex eccentricity in a gas cyclone[J]. Applied Mathematical Modelling, 2020, 80: 683-701.
|
8 |
Derksen J J, van den Akker H E A. Simulation of vortex core precession in a reverse-flow cyclone[J]. AIChE Journal, 2000, 46(7): 1317-1331.
|
9 |
高助威, 王娟, 王江云, 等. 旋风分离器内涡核摆动的特性研究[J]. 工程热物理学报, 2017, 38(12): 2610-2618.
|
|
Gao Z W, Wang J, Wang J Y, et al. Study of the characteristics of vortex core oscillation in cyclone separator[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2610-2618.
|
10 |
宋健斐, 魏耀东, 时铭显. 蜗壳式旋风分离器内气相流场非轴对称特性分析[J]. 化工学报, 2007, 58(5): 1091-1096.
|
|
Song J F, Wei Y D, Shi M X. Analysis of asymmetry of gas-phase flow field in volute cyclone[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1091-1096.
|
11 |
Sun L Q, Wang D, Song J F, et al. Experimental study of gas swirling flow instability characteristics in a cyclone using the hot-wire anemometry technique[J]. AIChE Journal, 2020, 66(1): e16759.
|
12 |
蔡香丽, 杨智勇, 马玉苗, 等. 旋风分离器内旋转流湍流特性的实验分析[J]. 石油学报(石油加工), 2015, 31(4): 983-990.
|
|
Cai X L, Yang Z Y, Ma Y M, et al. Experimental analysis of turbulence characteristics of swirling flow in cyclone[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(4): 983-990.
|
13 |
王甜, 徐俊, 宋健斐, 等. 旋风分离器内旋转流的不稳定性[J]. 化工学报, 2010, 61(2): 317-322.
|
|
Wang T, Xu J, Song J F, et al. Instability of swirling flow in cyclone[J]. CIESC Journal, 2010, 61(2): 317-322.
|
14 |
Sun L Q, Song J F, Wang D, et al. An experimental investigation on gas flow field dynamic characteristics in a reverse cyclone[J]. Chemical Engineering Research and Design, 2020, 160: 52-62.
|
15 |
He M Y, Zhang Y H, Ma L, et al. Study on flow field characteristics in a reverse rotation cyclone with PIV[J]. Chemical Engineering and Processing - Process Intensification, 2018, 126: 100-107.
|
16 |
Yang J X, Dong Z Z, Shen C, et al. Analysis of effect of radial confluence flow on vortex core motion[J]. Powder Technology, 2019, 356: 871-879.
|
17 |
王璐, 张兴芳, 董振洲, 等. 旋风分离器入口形式对内流场非稳态特性的影响[J]. 化工学报, 2018, 69(8): 3488-3501.
|
|
Wang L, Zhang X F, Dong Z Z, et al. Effect of inlet structure on transient properties of gas flow in cyclone separator[J]. CIESC Journal, 2018, 69(8): 3488-3501.
|
18 |
Zhang P, Chen G H, Wang W W, et al. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator[J]. Chinese Journal of Chemical Engineering, 2022, 46: 1-10.
|
19 |
Brar L S, Derksen J J. Revealing the details of vortex core precession in cyclones by means of large-eddy simulation[J]. Chemical Engineering Research and Design, 2020, 159: 339-352.
|
20 |
Brar L S, Elsayed K. Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network[J]. Powder Technology, 2017, 311: 465-483.
|
21 |
吴小林, 熊至宜, 姬忠礼, 等. 旋风分离器旋进涡核的数值模拟[J]. 化工学报, 2007, 58(2): 383-390.
|
|
Wu X L, Xiong Z Y, Ji Z L, et al. Numerical simulation of precessing vortex core in cyclone separator[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 383-390.
|
22 |
Gupta A K, Lilley D J, Syred N. Swirl Flows[M]. Tunbridge Wells, UK: Abacus Press, 1984.
|
23 |
Elsayed K, Lacor C. The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES[J]. Computers & Fluids, 2013, 71: 224-239.
|
24 |
Parvaz F, Hosseini S H, Ahmadi G, et al. Impacts of the vortex finder eccentricity on the flow pattern and performance of a gas cyclone[J]. Separation and Purification Technology, 2017, 187: 1-13.
|
25 |
El-Batsh H M. Improving cyclone performance by proper selection of the exit pipe[J]. Applied Mathematical Modelling, 2013, 37(7): 5286-5303.
|
26 |
Zhao Q, Cui B Y, Wei D Z, et al. Numerical analysis of the flow field and separation performance in hydrocyclones with different vortex finder wall thickness[J]. Powder Technology, 2019, 345: 478-491.
|
27 |
Zhang Z W, Li Q, Zhang Y H, et al. Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance[J]. Separation and Purification Technology, 2022, 286: 120394.
|
28 |
Gao Z W, Wang J, Wang J Y, et al. Analysis of the effect of vortex on the flow field of a cylindrical cyclone separator[J]. Separation and Purification Technology, 2019, 211: 438-447.
|
29 |
Wei Q, Sun G G, Gao C Z. Numerical analysis of axial gas flow in cyclone separators with different vortex finder diameters and inlet dimensions[J]. Powder Technology, 2020, 369: 321-333.
|