化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2370-2380.DOI: 10.11949/0438-1157.20220138
李智超1,2,3(),郑瑜1,2,3,张润楠1,2,3,姜忠义1,2,3,4()
收稿日期:
2022-01-25
修回日期:
2022-03-14
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
姜忠义
作者简介:
李智超(1998—),男,硕士研究生,基金资助:
Zhichao LI1,2,3(),Yu ZHENG1,2,3,Runnan ZHANG1,2,3,Zhongyi JIANG1,2,3,4()
Received:
2022-01-25
Revised:
2022-03-14
Online:
2022-06-05
Published:
2022-06-30
Contact:
Zhongyi JIANG
摘要:
水资源短缺与水污染是21世纪人类面临的共同挑战之一。膜技术具有低能耗和低成本等优点,是一种绿色高效的水处理技术。氧化石墨烯具有分子级的厚度和优异的化学稳定性,是一种优异的二维膜材料,在水处理膜领域具有重要应用前景。综述了氧化石墨烯膜在水处理领域的研究进展,针对膜技术面临的通量低和膜污染的挑战,以氧化石墨烯膜通道和表面构建中的介尺度问题为重点,探讨了不同尺度插层材料对氧化石墨烯膜通道结构与分离性能的影响,并分析了氧化石墨烯膜抗污染表面构建策略及对不同尺度污染物的抗污染机制。最后,对高通量抗污染氧化石墨烯膜研究进行了总结和展望。
中图分类号:
李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes[J]. CIESC Journal, 2022, 73(6): 2370-2380.
1 | Chuai X W, Yuan Y, Zhao R Q, et al. High-resolution monitoring of inland water bodies across China in long time series and water resource changes[J]. Environment, Development and Sustainability, 2021, 23(3): 3673-3695. |
2 | 郑根江. 中国膜产业发展状况与展望[J]. 水处理技术, 2020, 46(6): 1-3. |
Zheng G J. Development status and prospect of membrane industry in China[J]. Technology of Water Treatment, 2020, 46(6): 1-3. | |
3 | 生态环境部. 2020年中国生态环境状况公报(摘录)[J]. 环境保护, 2021, 49(11): 47-68. |
The Ministry of Ecology and Environment. China ecological environment status bulletin 2020 (excerpt)[J]. Environmental Protection, 2021, 49(11): 47-68. | |
4 | Yue X J, Li Z D, Zhang T, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309. |
5 | Fakhru'l-Razi A, Pendashteh A, Abdullah L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. |
6 | Zhang X R, Ma J X, Zheng J J, et al. Recent advances in nature-inspired antifouling membranes for water purification[J]. Chemical Engineering Journal, 2022, 432: 134425. |
7 | Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452(7185): 301-310. |
8 | Su P C, Wang F, Li Z J, et al. Graphene oxide membranes: controlling their transport pathways[J]. Journal of Materials Chemistry A, 2020, 8(31): 15319-15340. |
9 | 张鹏, 陈赞, 吴洪, 等. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67. |
Zhang P, Chen Z, Wu H, et al. Progress in research on channel microenvironment regulation of graphenebased CO2 separation membrane[J]. CIESC Journal, 2020, 71(1): 54-67. | |
10 | Wang H J, Wang M D, Liang X, et al. Organic molecular sieve membranes for chemical separations[J]. Chemical Society Reviews, 2021, 50(9): 5468-5516. |
11 | 王绍宇, 马翰泽, 吴洪, 等. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510. |
Wang S Y, Ma H Z, Wu H, et al. Research advances of organic framework membranes in gas separation[J]. CIESC Journal, 2021, 72(7): 3488-3510. | |
12 | Yuan S S, Li X, Zhu J Y, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
13 | Han X T, Guo Z G. Graphene and its derivative composite materials with special wettability: potential application in oil-water separation[J]. Carbon, 2021, 172: 647-681. |
14 | Chen X, Wang H. Graphene oxide patchwork membranes [J]. Nature Nanotechnology, 2021, 16(3): 226-227. |
15 | Liu Y N, Su Y L, Guan J L, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
16 | Han Y, Jiang Y Q, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8147-8155. |
17 | Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing [J]. Nature, 2017, 550(7676): 380-383. |
18 | Wang L, Wang N X, Li J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Separation and Purification Technology, 2016, 160: 123-131. |
19 | Wang Y R, Zhang W, Zeng X J, et al. Membranes for separation of alkali/alkaline earth metal ions: a review[J]. Separation and Purification Technology, 2022, 278: 119640. |
20 | Yang J J, Gong D, Li G H, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): e1705775. |
21 | Zhang Z, Xiao X, Zhou Y, et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration[J]. ACS Nano, 2021,15(8): 13178-13187. |
22 | Zhang M C, Guan K C, Shen J, et al. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity[J]. AIChE Journal, 2017, 63(11): 5054-5063. |
23 | Goh K, Jiang W C, Karahan H E, et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability[J]. Advanced Functional Materials, 2015, 25(47): 7348-7359. |
24 | Kong G D, Pang J, Tang Y C, et al. Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing[J]. Journal of Materials Chemistry A, 2019, 7(42): 24301-24310. |
25 | Wu T, Wang Z, Lu Y X, et al. Graphene oxide membranes for tunable ion sieving in acidic radioactive waste[J]. Advanced Science, 2021, 8(7): 2002717. |
26 | Bang K R, Bahamon D, Vega L F, et al. Synergetic effect of physicochemical and electrostatic strategies on ion sieving for polymer cross-linked graphene oxide membranes[J]. Environmental Science: Nano, 2021, 8(11): 3312-3321. |
27 | Ansari A, Peña-Bahamonde J, Wang M, et al. Polyacrylic acid-brushes tethered to graphene oxide membrane coating for scaling and biofouling mitigation on reverse osmosis membranes[J]. Journal of Membrane Science, 2021, 630: 119308. |
28 | Andreeva D V, Trushin M, Nikitina A, et al. Two-dimensional adaptive membranes with programmable water and ionic channels [J]. Nature Nanotechnology, 2021, 16(2): 174-180. |
29 | Hu J Y, Li M, Wang L J, et al. Polymer brush-modified graphene oxide membrane with excellent structural stability for effective fractionation of textile wastewater[J]. Journal of Membrane Science, 2021, 618: 118698. |
30 | Kumar M, Baniowda H M, Sreedhar N, et al. Fouling resistant, high flux, charge tunable hybrid ultrafiltration membranes using polymer chains grafted graphene oxide for NOM removal[J]. Chemical Engineering Journal, 2021, 408: 127300. |
31 | Chen X F, Mohammed S, Yang G, et al. Selective permeation of water through angstrom-channel graphene membranes for bioethanol concentration[J]. Advanced Materials, 2020, 32(33): e2002320. |
32 | Huang Q, Zhang S C, Li X X, et al. Intelligent graphene oxide membranes with pH tunable channels for water treatment[J]. Chemical Engineering Journal, 2022, 431: 133462. |
33 | Chen T, Butt F S, Zhang M, et al. Ultra-permeable zeolitic imidazolate frameworks-intercalated graphene oxide membranes for unprecedented ultrafast molecular separation[J]. Chemical Engineering Journal, 2021, 419: 129507. |
34 | Zhang W H, Yin M J, Zhao Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport [J]. Nature Nanotechnology, 2021, 16(3): 337-343. |
35 | Chen L, Li N, Wen Z Y, et al. Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application[J]. Chemical Engineering Journal, 2018, 347: 12-18. |
36 | Dong L L, Li M H, Zhang S, et al. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions[J]. Desalination, 2020, 476: 114227. |
37 | Han S T, Li W Y, Xi H L, et al. Plasma-assisted in situ preparation of graphene-Ag nanofiltration membranes for efficient removal of heavy metal ions[J]. Journal of Hazardous Materials, 2022, 423: 127012. |
38 | Liu G G, Han K, Ye H Q, et al. Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment[J]. Chemical Engineering Journal, 2017, 320: 74-80. |
39 | Zhao X T, Su Y L, Liu Y N, et al. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8247-8256. |
40 | Shao L Y, Yu Z X, Li X H, et al. One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation[J]. Applied Clay Science, 2019, 181: 105208. |
41 | Gao S J, Qin H L, Liu P P, et al. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules[J]. Journal of Materials Chemistry A, 2015, 3(12): 6649-6654. |
42 | Wei Y B, Zhu Y X, Jiang Y J. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification[J]. Chemical Engineering Journal, 2019, 356: 915-925. |
43 | Ma Y, Su Y L, He M R, et al. Graphene oxide membranes with conical nanochannels for ultrafast water transport[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37489-37497. |
44 | Sui X, Yuan Z W, Liu C, et al. Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane[J]. Journal of Materials Chemistry A, 2020, 8(19): 9713-9725. |
45 | Ma J, Tang X D, He Y, et al. Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability[J]. Desalination, 2020, 480: 114328. |
46 | Khan N A, Yuan J Q, Wu H, et al. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 28978-28986. |
47 | Zhao H X, Chen S, Quan X, et al. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment[J]. Applied Catalysis B: Environmental, 2016, 194: 134-140. |
48 | Hou R T, He Y, Yu H, et al. Intercalation of N-doped graphene into graphene oxide-based membranes to improve their overall nanofiltration performance[J]. Chemical Physics Letters, 2021, 775: 138657. |
49 | Liu Y N, Guan J Y, Su Y L, et al. Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets[J]. Journal of Materials Chemistry A, 2019, 7(44): 25458-25466. |
50 | Liu M, Weston P J, Hurt R H. Controlling nanochannel orientation and dimensions in graphene-based nanofluidic membranes [J]. Nature Communicatjions, 2021, 12(1): 507. |
51 | Liu T, Zhang R Q, Chen M W, et al. Vertically aligned polyamidoxime/graphene oxide hybrid sheets' membrane for ultrafast and selective extraction of uranium from seawater[J]. Advanced Functional Materials, 2021: 2111049. |
52 | He M R, Zhang R N, Zhang K, et al. Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation[J]. Journal of Materials Chemistry A, 2019, 7(18): 11468-11477. |
53 | Narayan R, Kim J E, Kim J Y, et al. Graphene oxide liquid crystals: discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16): 3045-3068. |
54 | Yao B W, Chen J, Huang L, et al. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures[J]. Advanced Materials, 2016, 28(8): 1623-1629. |
55 | Sun Z X, Fang S Y, Hu Y H. 3D graphene materials: from understanding to design and synthesis control[J]. Chemical Reviews, 2020, 120(18): 10336-10453. |
56 | Zhang R N, Liu Y N, He M R, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924. |
57 | Zhang Q, Chen S, Fan X F, et al. A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving[J]. Applied Catalysis B: Environmental, 2018, 224: 204-213. |
58 | Sun J Q, Hu C Z, Wu B C, et al. Fouling mitigation of a graphene hydrogel membrane electrode by electrical repulsion and in situ self-cleaning in an electro-membrane reactor[J]. Chemical Engineering Journal, 2020, 393: 124817. |
59 | Yang E, Alayande A B, Kim C M, et al. Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement[J]. Desalination, 2018, 426: 21-31. |
60 | Huang Y, Zhu G, Zou K, et al. Highly efficient removal of organic pollutants from wastewater using a recyclable graphene oxide membrane intercalated with g-C3N4@TiO2-nanowires[J]. Journal of Molecular Liquids, 2021, 337: 116461. |
61 | Ma H R, Wang G L, Xu Z H, et al. Confining peroxymonosulfate activation in carbon nanotube intercalated nitrogen doped reduced graphene oxide membrane for enhanced water treatment: the role of nanoconfinement effect[J]. Journal of Colloid and Interface Science, 2022, 608: 2740-2751. |
62 | Cai Y H, Chen D Y, Li N J, et al. A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux[J]. Advanced Materials, 2020, 32(25): 2001265. |
63 | Yu Z X, Zeng H J, Min X, et al. High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment[J]. Journal of Applied Polymer Science, 2020, 137(12): 48488. |
64 | Zhu C Y, Liu G G, Han K, et al. One-step facile synthesis of graphene oxide/TiO2 composite as efficient photocatalytic membrane for water treatment: crossflow filtration operation and membrane fouling analysis[J]. Chemical Engineering and Processing - Process Intensification, 2017, 120: 20-26. |
65 | Xie A T, Cui J Y, Yang J, et al. Graphene oxide/Fe(Ⅲ)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes[J]. Applied Catalysis B: Environmental, 2020, 264: 118548. |
66 | Ho K C, Teow Y H, Mohammad A W, et al. Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation[J]. Journal of Membrane Science, 2018, 552: 189-201. |
67 | Wei G L, Zhao Y S, Dong J, et al. Electrochemical cleaning of fouled laminar graphene membranes[J]. Environmental Science & Technology Letters, 2020, 7(10): 773-778. |
68 | Valizadeh S, Naji L L, Karimi M. Controlling interlayer spacing of graphene oxide membrane in aqueous media using a biocompatible heterobifunctional crosslinker for penicillin-G procaine removal[J]. Separation and Purification Technology, 2021, 263: 118392. |
69 | Wang M, Wang J, Jiang J W. Membrane fouling: microscopic insights into the effects of surface chemistry and roughness[J]. Advanced Theory and Simulations, 2022, 5(1): 2100395. |
70 | Wei G L, Dong J, Bai J, et al. Structurally stable, antifouling, and easily renewable reduced graphene oxide membrane with a carbon nanotube protective layer[J]. Environmental Science & Technology, 2019, 53(20): 11896-11903. |
71 | Feng L D, Gao Y, Xu Y, et al. A dual-functional layer modified GO@SiO2 membrane with excellent anti-fouling performance for continuous separation of oil-in-water emulsion[J]. Journal of Hazardous Materials, 2021, 420: 126681. |
72 | Han J L, Zhang D P, Jiang W R, et al. Tuning the functional groups of a graphene oxide membrane by ·OH contributes to the nearly complete prevention of membrane fouling[J]. Journal of Membrane Science, 2019, 576: 190-197. |
73 | Han J L, Haider M R, Liu M J, et al. Borate inorganic cross-linked durable graphene oxide membrane preparation and membrane fouling control[J]. Environmental Science & Technology, 2019, 53(3): 1501-1508. |
74 | Huang T F, Zhang L, Chen H L, et al. Sol-gel fabrication of a non-laminated graphene oxide membrane for oil/water separation[J]. Journal of Materials Chemistry A, 2015, 3(38): 19517-19524. |
75 | Ma G Y, Xu X S, Tesfai M, et al. Nanocomposite cation-exchange membranes for wastewater electrodialysis: organic fouling, desalination performance, and toxicity testing[J]. Separation and Purification Technology, 2021, 275: 119217. |
76 | Zhao X T, Su Y L, Cao J L, et al. Fabrication of antifouling polymer-inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation[J]. Journal of Materials Chemistry A, 2015, 3(14): 7287-7295. |
77 | Lee B, Suh D W, Hong S P, et al. A surface-modified EDTA-reduced graphene oxide membrane for nanofiltration and anti-biofouling prepared by plasma post-treatment[J]. Environmental Science: Nano, 2019, 6(7): 2292-2298. |
78 | Wang J, Gao X L, Yu H, et al. Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance[J]. Separation and Purification Technology, 2019, 215: 91-101. |
79 | Liu S B, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9): 6971-6980. |
80 | López-Cázares M I, Pérez-Rodríguez F, Rangel-Méndez J R, et al. Improved conductivity and anti(bio)fouling of cation exchange membranes by AgNPs-GO nanocomposites[J]. Journal of Membrane Science, 2018, 565: 463-479. |
81 | Li M, Hu J Y, Li B, et al. Graphene oxide nanofiltration membrane with trimethylamine-N-oxide zwitterions for robust biofouling resistance[J]. Journal of Membrane Science, 2021, 640: 119855. |
[1] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[2] | 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO |
[3] | 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611. |
[4] | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
[5] | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
[6] | 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414. |
[7] | 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676. |
[8] | 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
[9] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[10] | 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689. |
[11] | 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305. |
[12] | 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317. |
[13] | 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333. |
[14] | 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369. |
[15] | 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||