化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2318-2333.doi: 10.11949/0438-1157.20220159

• 综述与专论 • 上一篇    下一篇

溶液结晶中的介尺度成核过程研究进展

汪帆1(),刘岩博1,李康丽2,童丽2,金美堂2,汤伟伟1,陈明洋1,2(),龚俊波1,2,3()   

  1. 1.天津大学化工学院化学工程联合国家重点实验室,天津 300072
    2.天津大学浙江绍兴研究院,浙江 绍兴 312300
    3.化学与化学工程广东实验室,广东 汕头 515031
  • 收稿日期:2022-02-07 修回日期:2022-03-09 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 陈明洋,龚俊波 E-mail:fanwangworkharder@tju.edu.cn;chenmingyang@tju.edu.cn;junbo_gong@tju.edu.cn
  • 作者简介:汪帆(1999—),男,硕士研究生, fanwangworkharder@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(22108195);化学与化学工程广东实验室项目(1912014)

Research progress on mesoscale nucleation process in solution crystallization

Fan WANG1(),Yanbo LIU1,Kangli LI2,Li TONG2,Meitang JIN2,Weiwei TANG1,Mingyang CHEN1,2(),Junbo GONG1,2,3()   

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Tianjin University Research Institute of Zhejiang Shaoxing, Shaoxing 312300, Zhejiang, China
    3.Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, Guangdong, China
  • Received:2022-02-07 Revised:2022-03-09 Published:2022-06-05 Online:2022-06-30
  • Contact: Mingyang CHEN,Junbo GONG E-mail:fanwangworkharder@tju.edu.cn;chenmingyang@tju.edu.cn;junbo_gong@tju.edu.cn

摘要:

成核作为溶液结晶的第一步,是决定晶体产品质量的关键因素。目前,成核理论主要包括经典成核理论和非经典成核理论。相比于仅以原子、离子或分子等均匀稳定结构为单元的经典成核理论,非经典成核理论以纳米级前聚体为单元,这类单元涵盖了聚集体、纳米粒子等介尺度非均匀动态结构,导致形成的非经典成核过程更为复杂,需在传统的化学、化学工程和过程系统工程研究方法的基础上,充分利用介尺度科学研究方法完成其核心规律的探究。为此,总结了二步成核理论、预成核团簇理论、粒子附着晶化理论以及其他新提出的非经典成核理论,分析了其中的介尺度结构及其时空动态行为,并探讨了利用介尺度数学模型对现有成核数学模型的修正和优化的思路,最后对溶液结晶中晶体成核的介尺度研究范式及理论发展进行了展望。

关键词: 成核, 介尺度, 前聚体, EMMS模型, 两相流, 虚拟过程工程

Abstract:

Nucleation, as the first step in solution crystallization, is a key factor in determining the quality of crystalline products. Nucleation theory mainly includes classical nucleation theory and non-classical nucleation theory. Compared with the classical nucleation theory with uniform and stable structures such as atoms, ions, or molecules as units, non-classical nucleation theories often consider nanoscale precursors as units, such as ion-associated aggregates, nanoparticles and other non-uniform dynamic structures. As a result, the formation of non-classical nucleation processes is more complex. On the basis of traditional research methods of chemistry, chemical engineering and process systems engineering, it is necessary to make full use of mesoscale scientific research methods to complete the exploration of its core laws. This review summarizes the non-classical nucleation theories such as two-step nucleation theory, pre-nucleation cluster theory, and particle attachment crystallization theory, as well as other new theories proposed in recent years, and analyzes the mesoscale structure and its spatiotemporal dynamic behavior, the idea of revising and optimizing the existing nucleation mathematical model with mesoscale mathematical model is discussed, and the mesoscale research paradigm and theoretical development of crystal nucleation in solution crystallization are prospected.

Key words: nucleation, mesoscale, precursor, EMMS model, two-phase flow, virtual process engineering

中图分类号: 

  • TQ 018

图1

基于三个层次的多尺度特征和介尺度问题"

图2

经典成核理论机制示意图"

图3

单个线体团簇(大小从1到大于50个分子)的快照 (比例尺,20 nm)[38]"

图4

二步成核过程的示意图"

图5

液滴团簇自由能随晶核大小的变化[45]"

图6

二步成核过程中自由能的变化[19]"

图7

预成核团簇理论的成核机理"

图8

MOF-2/-5中的聚集体团簇[59]"

图9

粒子附着晶化理论的成核机理"

图10

附着过程的典型动力学过程[64]"

图11

COF-5的两条成核途径[69]"

图12

五步选择进化结晶机理图[70]1—扁平化;2—碰撞聚集;3—亚稳相分离;4—Ostwald熟化;5—层状生长"

图13

局部非均匀气固流场的分解(a);成核过程非均匀固液流场的分解(b)"

图14

虚拟过程工程的科学内涵"

1 Liu X W, Chee S W, Raj S, et al. Three-step nucleation of metal-organic framework nanocrystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2008880118.
2 Myerson A S, Trout B L. Nucleation from solution[J]. Science, 2013, 341(6148): 855-856.
3 Tsarfati Y, Biran I, Wiedenbeck E, et al. Continuum crystallization model derived from pharmaceutical crystallization mechanisms[J]. ACS Central Science, 2021, 7(5): 900-908.
4 Olafson K N, Nguyen T Q, Rimer J D, et al. Antimalarials inhibit hematin crystallization by unique drug-surface site interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): 7531-7536.
5 Davey R J, Schroeder S L M, ter Horst J H. Nucleation of organic crystals—a molecular perspective[J]. Angewandte Chemie International Edition, 2013, 52(8): 2166-2179.
6 Fang C, Tang W W, Wu S G, et al. Ultrasound-assisted intensified crystallization of L-glutamic acid: crystal nucleation and polymorph transformation[J]. Ultrasonics Sonochemistry, 2020, 68: 105227.
7 Shi P, Xu S J, Ma Y M, et al. Probing the structural pathway of conformational polymorph nucleation by comparing a series of α, ω-alkanedicarboxylic acids[J]. IUCrJ, 2020, 7(3): 422-433.
8 Davey R J, Allen K, Blagden N, et al. Crystal engineering—nucleation, the key step[J]. CrystEngComm, 2002, 4(47): 257-264.
9 Coquerel G. Crystallization of molecular systems from solution: phase diagrams, supersaturation and other basic concepts[J]. Chemical Society Reviews, 2014, 43(7): 2286-2300.
10 Martin S T. Phase transitions of aqueous atmospheric particles[J]. Chemical Reviews, 2000, 100(9): 3403-3454.
11 Karthika S, Radhakrishnan T K, Kalaichelvi P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16(11): 6663-6681.
12 Li X, Yin Q X, Zhang M J, et al. Antisolvent crystallization of erythromycin ethylsuccinate in the presence of liquid-liquid phase separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 766-776.
13 Cui P L, Zhang X W, Yin Q X, et al. Evidence of hydrogen-bond formation during crystallization of cefodizime sodium from induction-time measurements and in situ Raman spectroscopy[J]. Industrial & Engineering Chemistry Research, 2012, 51(42): 13663-13669.
14 Gower L B, Odom D J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process[J]. Journal of Crystal Growth, 2000, 210(4): 719-734.
15 Gebauer D, Cölfen H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584.
16 Thanh N T K, MacLean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-7630.
17 Klaerner G, Padmanabhan R. Multi-step/step-wise polymerization of well-defined oligomers[M]//Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier, 2016.
18 Sun M M, Tang W W, Du S C, et al. Understanding the roles of oiling-out on crystallization of β-alanine: unusual behavior in metastable zone width and surface nucleation during growth stage[J]. Crystal Growth & Design, 2018, 18(11): 6885-6890.
19 Vekilov P G. Dense liquid precursor for the nucleation of ordered solid phases from solution[J]. Crystal Growth & Design, 2004, 4(4): 671-685.
20 Chen J J, Zhu E B, Liu J, et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier[J]. Science, 2018, 362(6419): 1135-1139.
21 Li J H, Huang W L, Chen J H. Possible roadmap to advancing the knowledge system and tackling challenges from complexity[J]. Chemical Engineering Science, 2021, 237:116548.
22 Ge W, Chen F G, Gao J, et al. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism[J]. Chemical Engineering Science, 2007, 62(13): 3346-3377.
23 Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458.
24 Smeets P J M, Cho K R, Kempen R G E, et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy[J]. Nature Materials, 2015, 14(4): 394-399.
25 Yang J, Koo J, Kim S, et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy[J]. Journal of the American Chemical Society, 2019, 141(2): 763-768.
26 Baumgartner J, Dey A, Bomans P H H, et al. Nucleation and growth of magnetite from solution[J]. Nature Materials, 2013, 12(4): 310-314.
27 Xu S J, Chen Y F, Gong J B, et al. Interplay between kinetics and thermodynamics on the probability nucleation rate of a urea-water crystallization system[J]. Crystal Growth & Design, 2018, 18(4): 2305-2315.
28 Yang J, Xu S J, Wang J K, et al. Nucleation behavior of ethyl vanillin: balance between chemical potential difference and saturation temperature[J]. Journal of Molecular Liquids, 2020, 303: 112609.
29 Xu S J, Wang J K, Zhang K K, et al. Nucleation behavior of eszopiclone-butyl acetate solutions from metastable zone widths[J]. Chemical Engineering Science, 2016, 155: 248-257.
30 Volmer M, Weber. Keimbildung in übersättigten gebilden[J]. Zeitschrift Für Physikalische Chemie, 1926, 119U(1): 277-301.
31 Farkas L. Keimbildungsgeschwindigkeit in übersättigten dämpfen[J]. Zeitschrift Für Physikalische Chemie, 1927, 125U(1): 236-242.
32 Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen[J]. Annalen Der Physik, 1935, 416(8): 719-752.
33 Bai G, Gao D, Liu Z, et al. Probing the critical nucleus size for ice formation with graphene oxide nanosheets[J]. Nature, 2019, 576(7787): 437-441.
34 Garten V A, Head R B. Homogeneous nucleation and the phenomenon of crystalloluminescence[J]. Philosophical Magazine, 1966, 14(132): 1243-1253.
35 Gilra N K. Precrystallization theory applied to ultrasonic velocity in supercooled water[J]. Journal of the Physical Society of Japan, 1967, 23(6): 1431.
36 Adamski T. Commination of crystal nucleation by a precipitation method[J]. Nature, 1963, 197(4870): 894.
37 Yau S T, Vekilov P G. Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization[J]. Journal of the American Chemical Society, 2001, 123(6): 1080-1089.
38 Sleutel M, Lutsko J, van Driessche A E S, et al. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision[J]. Nature Communications, 2014, 5: 5598.
39 Tidhar Y, Weissman H, Tworowski D, et al. Mechanism of crystalline self-assembly in aqueous medium: a combined cryo-TEM/kinetic study[J]. Chemistry - A European Journal, 2014, 20(33): 10332-10342.
40 Wallace A F, Hedges L O, Fernandez-Martinez A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions[J]. Science, 2013, 341(6148): 885-889.
41 Galkin O, Pan W C, Filobelo L, et al. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers[J]. Biophysical Journal, 2007, 93(3): 902-913.
42 ten Wolde P R, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctuations[J]. Science, 1997, 277(5334): 1975-1978.
43 Talanquer V, Oxtoby D W. Crystal nucleation in the presence of a metastable critical point[J]. The Journal of Chemical Physics, 1998, 109(1): 223-227.
44 Sleutel M, van Driessche A E S. Role of clusters in nonclassical nucleation and growth of protein crystals[J]. PNAS, 2014, 111(5): 201309320.
45 Lutsko J F. How crystals form: a theory of nucleation pathways[J]. Science Advances, 2019, 5(4): eaav7399.
46 Garcia N A, Malini R I, Freeman C L, et al. Simulation of calcium phosphate prenucleation clusters in aqueous solution: association beyond ion pairing[J]. Crystal Growth & Design, 2019, 19(11): 6422-6430.
47 Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822.
48 Scheck J, Wu B H, Drechsler M, et al. The molecular mechanism of iron(Ⅲ) oxide nucleation[J]. The Journal of Physical Chemistry Letters, 2016, 7(16): 3123-3130.
49 Gebauer D, Kellermeier M, Gale J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chemical Society Reviews, 2014, 43(7): 2348-2371.
50 van Vleet M J, Weng T T, Li X Y, et al. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth[J]. Chemical Reviews, 2018, 118(7): 3681-3721.
51 Kellermeier M, Rosenberg R, Moise A, et al. Amino acids form prenucleation clusters: ESI-MS as a fast detection method in comparison to analytical ultracentrifugation[J]. Faraday Discussions, 2012, 159: 23.
52 Nielsen M H, Aloni S, de Yoreo J J. In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162.
53 Shi P, Xu S J, Yang H Y, et al. Use of additives to regulate solute aggregation and direct conformational polymorph nucleation of pimelic acid[J]. IUCrJ, 2021, 8(Pt 2): 161-167.
54 Li S, Tang W W, Shi P, et al. A new perspective of gallic acid on calcium oxalate nucleation[J]. Crystal Growth & Design, 2020, 20(5): 3173-3181.
55 Zhao S L, Gao J, Ma S Y, et al. Mechanism and modelling of reactive crystallization process of lithium carbonate[J]. Processes, 2019, 7(5): 248.
56 龚俊波, 李斯, 陈明洋, 等. 氯吡格雷硫酸氢盐的溶析结晶过程研究[J]. 中国医药工业杂志, 2018, 49(5): 677-683.
Gong J B, Li S, Chen M Y, et al. Study on the process of antisolvent crystallization of clopidogrel hydrogen sulfate[J]. Chinese Journal of Pharmaceuticals, 2018, 49(5): 677-683.
57 Chen M Y, Du S C, Zhang T, et al. Spherical crystallization and the mechanism of clopidogrel hydrogen sulfate[J]. Chemical Engineering & Technology, 2018, 41(6): 1259-1265.
58 Pouget E M, Bomans P H H, Goos J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458.
59 Xing J, Schweighauser L, Okada S, et al. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses[J]. Nature Communications, 2019, 10: 3608.
60 Bewernitz M A, Gebauer D, Long J, et al. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate[J]. Faraday Discussions, 2012, 159: 291.
61 de Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760.
62 Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: a new perspective[J]. Materials Science and Engineering: R: Reports, 2007, 58(3/4/5): 77-116.
63 Ivanov V K, Fedorov P P, Ye Baranchikov A, et al. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth[J]. Russian Chemical Reviews, 2014, 83(12): 1204-1222.
64 Li D S, Nielsen M H, Lee J R I, et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science, 2012, 336(6084): 1014-1018.
65 Rodríguez-Navarro C, Ruiz-Agudo E, Harris J, et al. Nonclassical crystallization in vivo et in vitro (Ⅱ): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism[J]. Journal of Structural Biology, 2016, 196(2): 260-287.
66 Li M Y, Li S, Tang W W, et al. Understanding the crystallization pathway of monosodium urate monohydrate in a biomimetic matrix[J]. Crystal Growth & Design, 2020, 20(2): 804-812.
67 Mirabello G, Ianiro A, Bomans P H H, et al. Crystallization by particle attachment is a colloidal assembly process[J]. Nature Materials, 2020, 19(4): 391-396.
68 Michaels T C T, Lazell H W, Arosio P, et al. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation[J]. The Journal of Chemical Physics, 2015, 143(5): 054901.
69 Li H Y, Chavez A D, Li H F, et al. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5[J]. Journal of the American Chemical Society, 2017, 139(45): 16310-16318.
70 Chen H, Li M, Lu Z, et al. Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states[J]. Nature Communications, 2019, 10: 3872.
71 Kashchiev D, van Rosmalen G M. Review: nucleation in solutions revisited[J]. Crystal Research and Technology, 2003, 38(78): 555-574.
72 Tang W W, Sima A D, Gong J B, et al. Kinetic difference between concomitant polymorphism and solvent-mediated phase transformation: a case of tolfenamic acid[J]. Crystal Growth & Design, 2020, 20(3): 1779-1788.
73 Du W, Yin Q X, Bao Y, et al. Concomitant polymorphism of prasugrel hydrochloride in reactive crystallization[J]. Industrial & Engineering Chemistry Research, 2013, 52(46): 16182-16189.
74 Zhang K K, Xu S J, Liu S Y, et al. Novel strategy to control polymorph nucleation of gamma pyrazinamide by preferred intermolecular interactions during heterogeneous nucleation[J]. Crystal Growth & Design, 2018, 18(9): 4874-4879.
75 林家伟, 石鹏, 龚俊波, 等. 表面诱导药物多晶型成核的研究进展[J]. 化工学报, 2021, 72(2): 814-827.
Lin J W, Shi P, Gong J B, et al. Progress on surface-induced nucleation of drug for controlling polymorphism[J]. CIESC Journal, 2021, 72(2): 814-827.
76 赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 12-21.
Zhao S L, Wang L Y, Wu S G. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 12-21.
77 汤伟伟, 李斯, 龚俊波. 有机晶体成核分子机理研究进展[J]. 化学工业与工程, 2018, 35(3): 2-11.
Tang W W, Li S, Gong J B. Research progress on molecular mechanism of nucleation of organic crystals[J]. Chemical Industry and Engineering, 2018, 35(3): 2-11.
78 Erdemir D, Lee A Y, Myerson A S. Nucleation of crystals from solution: classical and two-step models[J]. Accounts of Chemical Research, 2009, 42(5): 621-629.
79 Lee J, Yang J, Kwon S G, et al. Nonclassical nucleation and growth of inorganic nanoparticles[J]. Nature Reviews Materials, 2016, 1: 16034.
80 Gebauer D, Wolf S E. Designing solid materials from their solute state: a shift in paradigms toward a holistic approach in functional materials chemistry[J]. Journal of the American Chemical Society, 2019, 141(11): 4490-4504.
81 Gilbert P U P A, Porter S M, Sun C Y, et al. Biomineralization by particle attachment in early animals[J]. PNAS, 2019, 116(36): 17659-17665.
82 Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 2005, 437(7059): 664-670.
83 Wu Z H, Yang S L, Wu W. Shape control of inorganic nanoparticles from solution[J]. Nanoscale, 2016, 8(3): 1237-1259.
84 Zhang Q, Liu S J, Yu S H. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future[J]. J. Mater. Chem., 2009, 19(2): 191-207.
85 Guo L, Wu J, Li J H. Complexity at mesoscales: a common challenge in developing artificial intelligence[J]. Engineering, 2019,5(5):924-929.
86 Li J H. Approaching virtual process engineering with exploring mesoscience[J]. Chemical Engineering Journal, 2015, 278: 541-555.
87 Li J H, Huang W L. Towards Mesoscience: the Principle of Compromise in Competition[M]. Berlin, Heidelberg: Springer, 2014.
88 Li J H, Tung Y, Kwauk M. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow[M]//Circulating Fluidized Bed Technology. Amsterdam: Elsevier, 1988: 89-103.
89 Yang N, Wu Z Y, Chen J H, et al. Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2011, 66(14): 3212-3222.
90 Wang L M, Qiu X P, Zhang L, et al. Turbulence originating from the compromise-in-competition between viscosity and inertia[J]. Chemical Engineering Journal, 2016, 300: 83-97.
91 Li J H, Zhang Z D, Ge W, et al. A simple variational criterion for turbulent flow in pipe[J]. Chemical Engineering Science, 1999, 54(8): 1151-1154.
92 Huang W L, Li J H. Mesoscale model for heterogeneous catalysis based on the principle of compromise in competition[J]. Chemical Engineering Science, 2016, 147: 83-90.
93 王维, 洪坤, 鲁波娜, 等. 流态化模拟: 基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106.
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106.
94 Li J H, Kwauk M. Multiscale nature of complex fluid-particle systems[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4227-4237.
95 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院, 1987.
Li J H. Multiscale action model and energy minimization method for two-phase flow[D]. Beijing: Chinese Academy of Sciences, 1987.
96 李飞, 陈程, 王锦生, 等. 稠密气固两相QL-EMMS曳力模型及改进[J]. 工程热物理学报, 2011, 32(1): 75-79.
Li F, Chen C, Wang J S, et al. QL-EMMS drag model & its revision for fluidized dense gas-solid two-phase flow[J]. Journal of Engineering Thermophysics, 2011, 32(1): 75-79.
97 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
Tong Y, Nouman A, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692.
98 Horio M, Kuroki H. Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds[J]. Chemical Engineering Science, 1994, 49(15): 2413-2421.
99 Bi H T, Grace J R. Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 57(3): 261-271.
100 Zhu H Y, Zhu J. Characterization of fluidization behavior in the bottom region of CFB risers[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 169-179.
101 Li J H, Zhang J Y, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8/9): 1687-1700.
102 Zhang J Y, Ge W, Li J H. Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling[J]. Chemical Engineering Science, 2005, 60(11): 3091-3099.
103 Li J H, Cheng C L, Zhang Z D, et al. The EMMS model—its application, development and updated concepts[J]. Chemical Engineering Science, 1999, 54(22): 5409-5425.
104 Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23.
105 Li J H, Ge W, Wang W, et al. From Multiscale Modeling to Meso-science[M]. Berlin, Heidelberg: Springer, 2013.
106 Ren Y, Gao J, Xu J, et al. Key factors in chaperonin-assisted protein folding[J]. Particuology, 2012, 10(1): 105-116.
107 Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335.
108 Li J H, Huang W L. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 41-60.
109 Liu Z K, Yin Q X, Zhang H, et al. Investigation of the crystallization of disodium 5'-inosinate in a water + ethanol system: solubility, nucleation mechanism, and crystal morphology[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8913-8919.
110 Zhang K K, Xu S J, Gong J B, et al. Revealing the critical role of template functional group ordering in the template-directed crystallization of pyrazinamide[J]. CrystEngComm, 2019, 21(42): 6382-6389.
111 Zhang J L, Liu A Y, Han Y, et al. Effects of self-assembled monolayers on selective crystallization of tolbutamide[J]. Crystal Growth & Design, 2011, 11(12): 5498-5506.
112 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281.
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Chinese Science: Chemistry, 2014, 44(3): 277-281.
113 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程: 分析与展望[J]. 化工学报, 2014, 65(7): 2403-2409.
Yang N, Li J H. Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J]. CIESC Journal, 2014, 65(7): 2403-2409.
114 Shafiq S I, Sanin C, Szczerbicki E, et al. Virtual engineering factory: creating experience base for industry 4.0[J]. Cybernetics and Systems, 2016, 47(1/2): 32-47.
115 Ge W, Guo L, Liu X H, et al. Mesoscience-based virtual process engineering[J]. Computers & Chemical Engineering, 2019, 126: 68-82.
[1] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[2] 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426.
[3] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[4] 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317.
[5] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[6] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[7] 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437.
[8] 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513.
[9] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[10] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[11] 张文龙, 宁尚雷, 靳海波, 马磊, 何广湘, 杨索和, 郭晓燕, 张荣月. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602.
[12] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[13] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[14] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[15] 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[2] 尚智, 杨瑞昌, FUKUDA Kenji, 钟勇, 巨泽建. 用扩散流动模型分析悬浮床内的气固两相向上流动[J]. CIESC Journal, 2003, 11(5): 497 -503 .
[3] 张光旭, 吴元欣, 马沛生, 田崎峰, 吴广文, 李定或, 王存文. 非均相羰基氧化一步合成碳酸二苯酯的研究(Ⅴ)筛选催化剂及优化合成条件[J]. CIESC Journal, 2003, 11(5): 526 -530 .
[4] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[5] 娄文勇, 宗敏华, 范晓丹. 水/有机溶剂双相中固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原[J]. CIESC Journal, 2003, 11(2): 136 -140 .
[6] 杨长生, 马沛生, 唐多强, 靳凤民. 1,2-丙二醇水溶液在不同温度下的超额摩尔体积黏度和热容[J]. CIESC Journal, 2003, 11(2): 175 -180 .
[7] 宋宝东, 邢爱华, 吴金川, 王世昌, . 表面活性剂包衣Candida rugosa脂肪酶在异辛烷中的稳定性[J]. CIESC Journal, 2003, 11(2): 217 -219 .
[8] Longan SHANG, Jin Hwan DO, 范代娣, 姜岷, Ho Nam CHANG. Ralstonia eutropha批式流加培养生产羟基丁酸-丙酸混合聚酯中丙酸进料优化研究[J]. CIESC Journal, 2003, 11(2): 220 -223 .
[9] 陈新志, 王连尉, 侯虞钧. 一种完全型形状因子对应态原理[J]. CIESC Journal, 2001, 9(4): 421 -426 .
[10] 沙勇, 成弘, 于艺红. 伴有Rayleigh对流的气液吸收过程数值模拟[J]. CIESC Journal, 2002, 10(5): 539 -544 .