28 |
蒋雪冬. 基于费托合成的气-液及气-液-固鼓泡塔流体力学特性[D].西安: 西安交通大学, 2015.
|
|
Jiang X D. Hydrodynamics analysis of gas-liquid/gas-liquid-solid bubble columns for Fischer-Tropsch synthesis[D]. Xi'an: Xi'an Jiaotong University, 2015.
|
29 |
Guan X P, Yang N. CFD simulation of bubble column hydrodynamics with a novel drag model based on EMMS approach[J]. Chemical Engineering Science, 2021, 243: 116758.
|
30 |
Hills J H. Radial nonuniformity of velocity and voidage in a bubble column[J]. Transactions of the Institution of Chemiclal Engineers, 1974, 52(1): 1-9.
|
31 |
Camarasa E, Vial C, Poncin S, et al. Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column[J]. Chemical Engineering and Processing: Processing Intensification, 1999, 38(4/5/6): 329-344.
|
32 |
Xiao Q, Wang J, Yang N, et al. Simulation of the multiphase flow in bubble columns with stability-constrained multi-fluid CFD models[J]. Chemical Engineering Journal, 2017, 329: 88-99.
|
33 |
Guan X P, Yang N. Modeling of co-current and counter-current bubble columns with an extended EMMS approach[J]. Particuology, 2019, 44(3): 126-135.
|
34 |
Zhou R T, Yang N, Li J H. A conceptual model for analyzing particle effects on gas-liquid flows in slurry bubble columns[J]. Powder Technology, 2020, 365: 28-38.
|
35 |
Zhou R T, Yang N, Li J H. CFD simulation of gas-liquid-solid flow in slurry bubble columns with EMMS drag model[J]. Powder Technology, 2017, 314: 466-479.
|
36 |
Yan P, Jin H B, He G X, et al. CFD simulation of hydrodynamics in a high-pressure bubble column using three optimized drag models of bubble swarm[J]. Chemical Engineering Science, 2019, 199: 137-155.
|
37 |
Yan P, Jin H B, He G X, et al. Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model[J]. Chemical Engineering Research and Design, 2020, 154: 47-59.
|
38 |
Yang N, Xiao Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors[J]. Chemical Engineering Science, 2017, 170: 241-250.
|
39 |
An M, Guan X P, Yang N. Modeling the effects of solid particles in CFD-PBM simulation of slurry bubble columns[J]. Chemical Engineering Science, 2020, 223: 115743.
|
1 |
Deen N G, van Sint Annaland M, Kuipers J A M. Multi-scale modeling of dispersed gas–liquid two-phase flow[J]. Chemical Engineering Science, 2004, 59(8/9): 1853-1861.
|
2 |
Drew D A. Mathematical modeling of two-phase flow[J]. Annual Review of Fluid Mechanics, 1983, 15: 261-291.
|
40 |
王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器 CFD 及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677.
|
|
Wang J, Yang N. CFD-PBM simulation with EMMS correctors for bubble column reactors[J]. CIESC Journal, 2017, 68(7): 2667-2677.
|
41 |
Heijnen J J, Hols J, van der Lans R G J M, et al. A simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculation regime[J]. Chemical Engineering Science, 1997, 52(15): 2527-2540.
|
42 |
Xu T T, Jiang X D, Yang N, et al. CFD simulation of internal-loop airlift reactor using EMMS drag model[J]. Particuology, 2015, 19: 124-132.
|
43 |
张佳宝, 崔丽杰, 杨宁. 曳力模型和湍流模型对内环流反应器数值模拟的影响[J]. 化工学报, 2018, 69(1): 389-395.
|
|
Zhang J B, Cui L J, Yang N. Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor[J]. CIESC Journal, 2018, 69(1): 389-395.
|
44 |
Jiang X D, Yang N, Yang B L. Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor[J]. Particuology, 2016, 27: 95-101.
|
45 |
Lee B W, Dudukovic M P. Determination of flow regime and gas holdup in gas–liquid stirred tanks[J]. Chemical Engineering Science, 2014, 109: 264-275.
|
46 |
肖颀, 杨宁. 基于EMMS模型的搅拌釜内气液两相流数值模拟[J]. 化工学报, 2016, 67(7): 2732-2739.
|
|
Xiao Q, Yang N. Numerical simulation of gas-liquid flow in stirred tanks based on EMMS model[J]. CIESC Journal, 2016, 67(7): 2732-2739.
|
47 |
李新菊, 管小平, 杨宁, 等. 基于能量最小多尺度曳力模型的搅拌槽内气液两相流计算液体力学模拟及实验研究[J]. 化工进展, 2017, 36(11): 4000-4009.
|
|
Li X J, Guan X P, Yang N, et al. Experimental study and CFD simulation of gas-liquid flow in a stirred tank using the EMMS drag model[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4000-4009.
|
48 |
Guan X P, Li X J, Yang N, et al. CFD simulation of gas-liquid flow in stirred tanks: effect of drag models[J]. Chemical Engineering Journal, 2020, 386: 121554.
|
49 |
Kong L N, Li W, Han L C, et al. On the measurement of gas holdup distribution near the region of impeller in a gas–liquid stirred Rushton tank by means of γ-CT[J]. Chemical Engineering Journal, 2012, 188: 191-198.
|
50 |
Qin C P, Chen C, Xiao Q, et al. CFD-PBM simulation of droplets size distribution in rotor-stator mixing devices[J]. Chemical Engineering Science, 2016, 155: 16-26.
|
51 |
Chen C, Guan X P, Ren Y, et al. Mesoscale modeling of emulsification in rotor-stator devices(Ⅰ): A population balance model based on EMMS concept[J]. Chemical Engineering Science, 2019, 193: 171-183.
|
52 |
Chen C, Guan X P, Ren Y, et al. Mesoscale modeling of emulsification in rotor-stator devices(Ⅱ): A model framework integrating emulsifier adsorption[J]. Chemical Engineering Science, 2019, 193: 156-170.
|
3 |
Jakobsen H A, Lindborg H, Dorao C A. Modeling of bubble column reactors: progress and limitations[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5107-5151.
|
4 |
Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406.
|
5 |
Liao Y X, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chemical Engineering Science, 2010, 65(10): 2851-2864.
|
6 |
Li J. Particle-fluid Two-phase Flow: the Energy-minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994.
|
7 |
Yang N, Chen J H, Zhao H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24): 6978-6991.
|
8 |
Li J H, Huang W L, Chen J H. Possible roadmap to advancing the knowledge system and tackling challenges from complexity[J]. Chemical Engineering Science, 2021, 237: 116548.
|
9 |
Li J H, Huang W L. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 41-60.
|
10 |
Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335.
|
11 |
Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004.
|
12 |
Yang N, Chen J H, Ge W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns[J]. Chemical Engineering Science, 2010, 65(1): 517-526.
|
13 |
Yang N, Wu Z Y, Chen J H, et al. Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2011, 66(14): 3212-3222.
|
14 |
Xiao Q, Yang N, Li J H. Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2013, 100: 279-292.
|
15 |
Chen J H, Yang N, Ge W, et al. Modeling of regime transition in bubble columns with stability condition[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 290-301.
|
16 |
Ruzicka M C, Drahoš J, Mena P C, et al. Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 15-22.
|
17 |
Ruzicka M C, Vecer M M, Orvalho S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4): 951-967.
|
18 |
Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80.
|
19 |
Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
|
20 |
Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571.
|
21 |
Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow[J]. Chemical Engineering Journal, 2020, 383: 123122.
|
22 |
Geng J W, Tian Y J, Wang W. Exploring a unified EMMS drag model for gas-solid fluidization[J]. Chemical Engineering Science, 2022, 251: 117444.
|
23 |
Nikolopoulos A, Samlis C, Zeneli M, et al. Introducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles[J]. Chemical Engineering Science, 2021, 229: 116013.
|
24 |
Yang Z, Lu B N, Wang W. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds[J]. Chemical Engineering Science, 2021, 246: 117003.
|
25 |
Lu B N, Wang W, Li J H, et al. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5487-5494.
|
26 |
Lu B N, Zhang J Y, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255.
|
27 |
Chen J H, Yang N, Ge W, et al. Computational fluid dynamics simulation of regime transition in bubble columns incorporating the dual-bubble-size model[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 8172-8179.
|