化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2427-2437.doi: 10.11949/0438-1157.20220450

• 综述与专论 • 上一篇    下一篇

基于介尺度稳定性条件的多相流曳力与群体平衡模型

管小平(),杨宁()   

  1. 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
  • 收稿日期:2022-03-30 修回日期:2022-05-18 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 杨宁 E-mail:xpguan@ipe.ac.cn;nyang@ipe.ac.cn
  • 作者简介:管小平(1988—),男,博士,副研究员,xpguan@ipe.ac.cn
  • 基金资助:
    国家自然科学基金项目(22178354)

Multiphase drag and population balance models based on mesoscale stability condition

Xiaoping GUAN(),Ning YANG()   

  1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-03-30 Revised:2022-05-18 Published:2022-06-05 Online:2022-06-30
  • Contact: Ning YANG E-mail:xpguan@ipe.ac.cn;nyang@ipe.ac.cn

摘要:

介尺度结构和介尺度机制是化工、冶金、能源等过程工程中的重要科学问题。尽管多相流数理模型在过去的几十年中已取得长足进展,但仍存在准确性依赖可调参数、模型适用性有限、计算量大等问题,难以适应当前快速发展的新工艺和新过程开发的需求。实际上,基于平均化方法的多流体方程组需要若干子模型封闭,如相间作用力、聚并/破碎核函数以及湍流模型等;这些子模型决定了多流体模型的模拟准确性。从介科学角度发展介尺度物理模型为解决这些问题提供了新的思路。模型可以解析多相流非均匀结构演化的控制机制,进而改进或重构子模型。总结了基于介尺度稳定条件的两类介尺度封闭模型:一类用于封闭相间动量传递,如介尺度曳力;另一类用于封闭离散相特征参数的演化,如介尺度群体平衡模型,计算气泡或液滴尺寸。进而综述了这些模型在流化床、鼓泡塔、气升式环流反应器、搅拌槽、转定子乳化器等多相流设备中的应用,并展望了未来发展方向和关键科学问题。

关键词: 多相流, 介尺度, 曳力, 群体平衡模型, 计算流体力学

Abstract:

Mesoscale structures and mechanisms represent one of the critical scientific problems in process engineering such as chemical, metallurgy and energy industries. Although the mathematical model of multiphase flow has made great progress in the past few decades, there are several longstanding problems including the modeling accuracy dependent on adjustable parameters, the limited model applicability, and large computation cost, etc. It is difficult for the model development to adapt to the demand of current rapid development of new technology and new processes. In fact, the multi-fluid model based on the averaging method requires several sub-models to be closed, e.g., interphase forces, coalescence/breakup kernel functions, and turbulence models. These sub-models determine the simulation accuracy of the multi-fluid model. Developing mesoscale models from the perspective of mesoscience provides new avenue through analyzing the dominant mechanisms for the evolution of heterogeneous structures in multiphase flow to improve or reconstruct the closure model. In this paper, two types of mesoscale closed models based on mesoscale stability conditions are summarized: one is used for the momentum transfer between closed phases like mesoscale drag, the other is for the evolution of the characteristic parameters of discrete phases, e.g., the mesoscale population balance model, to calculate the bubble or droplet size distribution. Then, the application of these models in multiphase flow equipment such as fluidized bed, bubble column, airlift loop reactor, stirred tank, rotor-stator emulsification is reviewed, and the future study and key scientific issues are analyzed.

Key words: multiphase flow, mesoscale, drag, population balance model, computational fluid dynamics

中图分类号: 

  • TQ 021.1
28 蒋雪冬. 基于费托合成的气-液及气-液-固鼓泡塔流体力学特性[D].西安: 西安交通大学, 2015.
Jiang X D. Hydrodynamics analysis of gas-liquid/gas-liquid-solid bubble columns for Fischer-Tropsch synthesis[D]. Xi'an: Xi'an Jiaotong University, 2015.
29 Guan X P, Yang N. CFD simulation of bubble column hydrodynamics with a novel drag model based on EMMS approach[J]. Chemical Engineering Science, 2021, 243: 116758.
30 Hills J H. Radial nonuniformity of velocity and voidage in a bubble column[J]. Transactions of the Institution of Chemiclal Engineers, 1974, 52(1): 1-9.
31 Camarasa E, Vial C, Poncin S, et al. Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column[J]. Chemical Engineering and Processing: Processing Intensification, 1999, 38(4/5/6): 329-344.
32 Xiao Q, Wang J, Yang N, et al. Simulation of the multiphase flow in bubble columns with stability-constrained multi-fluid CFD models[J]. Chemical Engineering Journal, 2017, 329: 88-99.
33 Guan X P, Yang N. Modeling of co-current and counter-current bubble columns with an extended EMMS approach[J]. Particuology, 2019, 44(3): 126-135.
34 Zhou R T, Yang N, Li J H. A conceptual model for analyzing particle effects on gas-liquid flows in slurry bubble columns[J]. Powder Technology, 2020, 365: 28-38.
35 Zhou R T, Yang N, Li J H. CFD simulation of gas-liquid-solid flow in slurry bubble columns with EMMS drag model[J]. Powder Technology, 2017, 314: 466-479.
36 Yan P, Jin H B, He G X, et al. CFD simulation of hydrodynamics in a high-pressure bubble column using three optimized drag models of bubble swarm[J]. Chemical Engineering Science, 2019, 199: 137-155.
37 Yan P, Jin H B, He G X, et al. Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model[J]. Chemical Engineering Research and Design, 2020, 154: 47-59.
38 Yang N, Xiao Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors[J]. Chemical Engineering Science, 2017, 170: 241-250.
39 An M, Guan X P, Yang N. Modeling the effects of solid particles in CFD-PBM simulation of slurry bubble columns[J]. Chemical Engineering Science, 2020, 223: 115743.
1 Deen N G, van Sint Annaland M, Kuipers J A M. Multi-scale modeling of dispersed gas–liquid two-phase flow[J]. Chemical Engineering Science, 2004, 59(8/9): 1853-1861.
2 Drew D A. Mathematical modeling of two-phase flow[J]. Annual Review of Fluid Mechanics, 1983, 15: 261-291.
40 王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器 CFD 及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677.
Wang J, Yang N. CFD-PBM simulation with EMMS correctors for bubble column reactors[J]. CIESC Journal, 2017, 68(7): 2667-2677.
41 Heijnen J J, Hols J, van der Lans R G J M, et al. A simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculation regime[J]. Chemical Engineering Science, 1997, 52(15): 2527-2540.
42 Xu T T, Jiang X D, Yang N, et al. CFD simulation of internal-loop airlift reactor using EMMS drag model[J]. Particuology, 2015, 19: 124-132.
43 张佳宝, 崔丽杰, 杨宁. 曳力模型和湍流模型对内环流反应器数值模拟的影响[J]. 化工学报, 2018, 69(1): 389-395.
Zhang J B, Cui L J, Yang N. Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor[J]. CIESC Journal, 2018, 69(1): 389-395.
44 Jiang X D, Yang N, Yang B L. Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor[J]. Particuology, 2016, 27: 95-101.
45 Lee B W, Dudukovic M P. Determination of flow regime and gas holdup in gas–liquid stirred tanks[J]. Chemical Engineering Science, 2014, 109: 264-275.
46 肖颀, 杨宁. 基于EMMS模型的搅拌釜内气液两相流数值模拟[J]. 化工学报, 2016, 67(7): 2732-2739.
Xiao Q, Yang N. Numerical simulation of gas-liquid flow in stirred tanks based on EMMS model[J]. CIESC Journal, 2016, 67(7): 2732-2739.
47 李新菊, 管小平, 杨宁, 等. 基于能量最小多尺度曳力模型的搅拌槽内气液两相流计算液体力学模拟及实验研究[J]. 化工进展, 2017, 36(11): 4000-4009.
Li X J, Guan X P, Yang N, et al. Experimental study and CFD simulation of gas-liquid flow in a stirred tank using the EMMS drag model[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4000-4009.
48 Guan X P, Li X J, Yang N, et al. CFD simulation of gas-liquid flow in stirred tanks: effect of drag models[J]. Chemical Engineering Journal, 2020, 386: 121554.
49 Kong L N, Li W, Han L C, et al. On the measurement of gas holdup distribution near the region of impeller in a gas–liquid stirred Rushton tank by means of γ-CT[J]. Chemical Engineering Journal, 2012, 188: 191-198.
50 Qin C P, Chen C, Xiao Q, et al. CFD-PBM simulation of droplets size distribution in rotor-stator mixing devices[J]. Chemical Engineering Science, 2016, 155: 16-26.
51 Chen C, Guan X P, Ren Y, et al. Mesoscale modeling of emulsification in rotor-stator devices(Ⅰ): A population balance model based on EMMS concept[J]. Chemical Engineering Science, 2019, 193: 171-183.
52 Chen C, Guan X P, Ren Y, et al. Mesoscale modeling of emulsification in rotor-stator devices(Ⅱ): A model framework integrating emulsifier adsorption[J]. Chemical Engineering Science, 2019, 193: 156-170.
3 Jakobsen H A, Lindborg H, Dorao C A. Modeling of bubble column reactors: progress and limitations[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5107-5151.
4 Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406.
5 Liao Y X, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chemical Engineering Science, 2010, 65(10): 2851-2864.
6 Li J. Particle-fluid Two-phase Flow: the Energy-minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994.
7 Yang N, Chen J H, Zhao H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24): 6978-6991.
8 Li J H, Huang W L, Chen J H. Possible roadmap to advancing the knowledge system and tackling challenges from complexity[J]. Chemical Engineering Science, 2021, 237: 116548.
9 Li J H, Huang W L. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 41-60.
10 Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335.
11 Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004.
12 Yang N, Chen J H, Ge W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns[J]. Chemical Engineering Science, 2010, 65(1): 517-526.
13 Yang N, Wu Z Y, Chen J H, et al. Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2011, 66(14): 3212-3222.
14 Xiao Q, Yang N, Li J H. Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2013, 100: 279-292.
15 Chen J H, Yang N, Ge W, et al. Modeling of regime transition in bubble columns with stability condition[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 290-301.
16 Ruzicka M C, Drahoš J, Mena P C, et al. Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 15-22.
17 Ruzicka M C, Vecer M M, Orvalho S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4): 951-967.
18 Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80.
19 Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
20 Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571.
21 Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow[J]. Chemical Engineering Journal, 2020, 383: 123122.
22 Geng J W, Tian Y J, Wang W. Exploring a unified EMMS drag model for gas-solid fluidization[J]. Chemical Engineering Science, 2022, 251: 117444.
23 Nikolopoulos A, Samlis C, Zeneli M, et al. Introducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles[J]. Chemical Engineering Science, 2021, 229: 116013.
24 Yang Z, Lu B N, Wang W. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds[J]. Chemical Engineering Science, 2021, 246: 117003.
25 Lu B N, Wang W, Li J H, et al. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5487-5494.
26 Lu B N, Zhang J Y, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255.
27 Chen J H, Yang N, Ge W, et al. Computational fluid dynamics simulation of regime transition in bubble columns incorporating the dual-bubble-size model[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 8172-8179.
[1] 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
[2] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[3] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[4] 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913.
[5] 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
[6] 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144.
[7] 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061.
[8] 贾龙菲, 付少童, 向星, 张华海, 张弢, 王利民. 颗粒振动影响动量传递过程的格子Boltzmann方法模拟[J]. 化工学报, 2023, 74(2): 735-747.
[9] 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524.
[10] 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104.
[11] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[12] 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
[13] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[14] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[15] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!