化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1239-1246.DOI: 10.11949/0438-1157.20221603
贾露凡(), 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛(
)
收稿日期:
2022-12-13
修回日期:
2023-02-14
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
孟涛
作者简介:
贾露凡(1998—),女,硕士研究生,18838936617@163.com
基金资助:
Lufan JIA(), Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG(
)
Received:
2022-12-13
Revised:
2023-02-14
Online:
2023-03-05
Published:
2023-04-19
Contact:
Tao MENG
摘要:
以微流控双水相液滴流技术为基础,开发了一种酶促反应平台,将微流控贴壁液滴流快速传递、高效混合的特点与双水相反应分离耦合过程优化结合。本体系克服了传统宏观双水相体系传质传热慢以及耗时耗能的问题,并建立了贴壁液滴微反应器,产生更大的内环流,进一步增强传质效果。探究了双水相液滴界面的分子限域能力、对酶和产物的选择性分配能力。通过比较贴微通道壁和未贴微通道壁两类液滴微反应器的酶促反应效果,发现贴微通道壁液滴微反应器仅6 min转化率即可达到40%,其反应速率可达未贴微通道壁液滴微反应器9.4倍。本文通过微流控双水相贴壁液滴流实现了酶促反应的强化,为微尺度下的酶催化反应过程强化提供了一种新的思路。
中图分类号:
贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246.
Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction[J]. CIESC Journal, 2023, 74(3): 1239-1246.
图 1 (a)微流控装置的实物图;(b)锥口局部显微镜图;(c)贴壁液滴流模型
Fig.1 (a) Microfluidic device; (b) The microscopic image of the nozzle; (c) Microfluidic adherent droplet flow model
图9 微通道内壁的亲疏水性对反应速率的影响(a)、(b)改性前后微通道的吸水高度;(c)微通道改性前后反应速率的比较(插图为对应的三相接触角照片)
Fig.9 Effect of hydrophobic and hydrophilic properties of the microchannel on the reaction rate: the height of water in microchannels before (a) and after (b) microchannel surface modification; (c) the reaction rate of the catalysis performed in microchannel before and after microchannel surface modification (the insets show the corresponding three-phase contact angle)
16 | Ge J, Lu D N, Zhu J Y, et al. Advances in preparation of nanostructured enzyme catalysts[J]. CIESC Journal, 2014, 65(7): 2668-2675. |
17 | Bussamra B C, Gomes J C, Freitas S, et al. A robotic platform to screen aqueous two-phase systems for overcoming inhibition in enzymatic reactions[J]. Bioresource Technology, 2019, 280: 37-50. |
18 | Zou S P, Hua D G, Jiang Z T, et al. A integrated process for nitrilase-catalyzed asymmetric hydrolysis and easy biocatalyst recycling by introducing biocompatible biphasic system[J]. Bioresource Technology, 2021, 320: 124392. |
19 | Kim T H, Kang S H, Han J E, et al. Multilayer engineering of enzyme cascade catalysis for one-pot preparation of nylon monomers from renewable fatty acids[J]. ACS Catalysis, 2020, 10(9): 4871-4878. |
20 | Yang J, Zhang X P, Yong Q A, et al. Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration[J]. Bioresource Technology, 2011, 102(7): 4905-4908. |
21 | Meng S X, Xue L H, Xie C Y, et al. Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device[J]. Chemical Engineering Journal, 2018, 335: 392-400. |
22 | Vobecka L, Romanov A, Slouka Z, et al. Optimization of aqueous two-phase systems for the production of 6-aminopenicillanic acid in integrated microfluidic reactors-separators[J]. New Biotechnology, 2018, 47: 73-79. |
23 | Wei D Z, Zhu J H, Cao X J. Enzymatic synthesis of cephalexin in aqueous two-phase systems[J]. Biochemical Engineering Journal, 2002, 11(2/3): 95-99. |
24 | Zijlstra G M, Gooijer C D, Tramper J. Extractive bioconversions in aqueous two-phase systems[J]. Current Opinion in Biotechnology, 1998, 9(2): 171-176. |
25 | 朱建航, 魏东芝, 曹学君, 等. 酶法合成头孢氨苄的反应-双水相萃取耦合过程[J]. 化工学报, 2003, 54(1): 95-99. |
Zhu J H, Wei D Z, Cao X J, et al. Enzymatic synthesis of cephalexin integrated with aqueous two-phase systems[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 95-99. | |
26 | Aguirre C, Concha I, Vergara J, et al. Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems[J]. Process Biochemistry, 2010, 45(7): 1163-1167. |
27 | Lu Y C, Xia Y, Luo G S. Phase separation of parallel laminar flow for aqueous two phase systems in branched microchannel[J]. Microfluidics and Nanofluidics, 2011, 10(5): 1079-1086. |
1 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
2 | Service R F. Miniaturization puts chemical plants where you want them[J]. Science, 1998, 282(5388): 400. |
3 | Gemoets H P L, Su Y H, Shang M J, et al. Liquid phase oxidation chemistry in continuous-flow microreactors[J]. Chemical Society Reviews, 2016, 45(1): 83-117. |
4 | Peyman S A, Abou-Saleh R H, McLaughlan J R, et al. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles[J]. Lab on a Chip, 2012, 12(21): 4544-4552. |
5 | Adamson D N, Mustafi D, Zhang J X J, et al. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab on a Chip, 2006, 6(9): 1178-1186. |
6 | 黄心童, 耿宇昊, 刘恒源, 等. 微流控制备新型功能纳米粒子研究进展[J].化工学报, 2023, 74(1): 355-364. |
Huang X T, Geng Y H, Liu H Y, et al. Research progress on new functional nanoparticles prepared by microfluidic technology[J]. CIESC Journal, 2023, 74(1): 355-364. | |
7 | 苏瑶瑶, 李平凡, 汪伟, 等. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60. |
Su Y Y, Li P F, Wang W, et al. Controllable fabrication of functional microparticle materials from microfluidic droplet templates[J]. CIESC Journal, 2021, 72(1): 42-60. | |
8 | Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide[J]. Angewandte Chemie (International ed. in English), 2014, 53(31): 7992-8002. |
9 | 邓传富, 汪伟, 谢锐, 等. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974. |
Deng C F, Wang W, Xie R, et al. Recent progress in scale-up integration of microfluidic droplet generators[J]. CIESC Journal, 2021, 72(12): 5965-5974. | |
10 | Ji J, Nie L, Qiao L, et al. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry[J]. Lab on a Chip, 2012, 12(15): 2625-2629. |
11 | Xu J H, Tan J, Li S W, et al. Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels[J]. Chemical Engineering Journal, 2007, 141(1): 242-249. |
12 | Song H, Tice J D, Ismagilov R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie (International ed. in English), 2003, 42(7): 768-772. |
13 | 李光晓, 刘塞尔, 苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
Li G X, Liu S E, Su Y H. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement[J]. CIESC Journal, 2021, 72(1): 452-467. | |
14 | Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409(6817): 258-268. |
15 | Klibanov A M. Improving enzymes by using them in organic solvents[J]. Nature, 2001, 409(6817): 241-246. |
16 | 戈钧, 卢滇楠, 朱晶莹, 等. 纳米酶催化剂制备方法研究进展[J]. 化工学报, 2014, 65(7): 2668-2675. |
28 | 林东强, 朱自强, 姚善泾, 等. 生化分离过程的新探索:双水相分配与相关技术的集成化[J]. 化工学报, 2000, 51(1): 1-6. |
Lin D Q, Zhu Z Q, Yao S J, et al. Novel technology in bioseparation process integration of aqueous two-phase partitioning with related techniques[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(1): 1-6. | |
29 | Wang Y Y, Dong Y M, Liu H Y, et al. Compartmentalized aqueous-in-aqueous droplets for flow biocatalysis[J]. ACS Applied Materials & Interfaces, 2022, 14(4):5009-5016. |
30 | Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. |
31 | Asenjo J A, Andrews B A. Aqueous two-phase systems for protein separation: a perspective[J]. Journal of Chromatography. A, 2011, 1218(49): 8826-8835. |
32 | Dewey D C, Strulson C A, Cacace D N, et al. Bioreactor droplets from liposome-stabilized all-aqueous emulsions[J]. Nature Communications, 2014, 5: 4670. |
33 | Kurt S K, Gursel I V, Hessel V, et al. Liquid-liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications[J]. Chemical Engineering Journal, 2016, 284: 764-777. |
34 | Kojima T, Takayama S. Membraneless compartmentalization facilitates enzymatic cascade reactions and reduces substrate inhibition[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32782-32791. |
35 | Malsch D, Gleichmann N, Kielpinski M, et al. Effects of fluid and interface interaction on droplet internal flow in all-glass micro channels[C]//Proceedings of ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany, 2009: 1571-1578. |
36 | Picardo J R, Pushpavanam S. Core-annular two-phase flow in a gently curved circular channel[J]. AIChE Journal, 2013, 59(12): 4871-4886. |
37 | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie (International ed. in English), 2006, 45(44): 7336-7356. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[3] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[8] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[9] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[10] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[11] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[12] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[13] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[14] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[15] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 284
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||