化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1712-1723.DOI: 10.11949/0438-1157.20221675
王瑞恒1(), 何品晶1,2, 吕凡1,2, 章骅1,2(
)
收稿日期:
2022-12-30
修回日期:
2023-04-03
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
章骅
作者简介:
王瑞恒(1998—),男,硕士研究生,2032884@tongji.edu.cn
基金资助:
Ruiheng WANG1(), Pinjing HE1,2, Fan LYU1,2, Hua ZHANG1,2(
)
Received:
2022-12-30
Revised:
2023-04-03
Online:
2023-04-05
Published:
2023-06-02
Contact:
Hua ZHANG
摘要:
为探究垃圾焚烧飞灰水洗后的最佳固液分离方式和工艺参数,将6种飞灰样品以3 L·kg-1液固比水洗后,分别采用重力沉降、离心沉降和抽滤3种方式固液分离,依据上清液/滤液浊度和总固体(TS)浓度、泥饼含水率和毛细吸水时间等指标,评价不同固液分离方式的效果。结果表明,重力沉降适用于分离粒度分布集中的飞灰,最佳的沉降时间应设在重力沉降曲线的拐点处(20~70 min)。最佳的离心沉降参数为转速3000 r·min-1、时间5 min。抽滤降低上清液/滤液浊度和泥饼含水率的效果最好,适用于分离粒度分布范围较广的飞灰。研究结果可为水洗后飞灰固液分离的工程化应用提供理论依据,应用时可根据飞灰的粒度分布、处理规模和场地需求选用合适的固液分离方式。
中图分类号:
王瑞恒, 何品晶, 吕凡, 章骅. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723.
Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators[J]. CIESC Journal, 2023, 74(4): 1712-1723.
焚烧厂 | 所在区域 | 处理规模/(t·d-1) | 烟气净化 处理工艺 | 飞灰可溶性氯 含量/% | 飞灰溶解性盐含量/% | 飞灰中Na含量/% | 飞灰中K含量/% | 飞灰中Ca含量/% |
---|---|---|---|---|---|---|---|---|
MSWI1 | 华中 | 1500 | SNCR+SDS+AC+BF | 15.87±0.17 | 53.59±0.11 | 4.04 | 5.44 | 39.89 |
MSWI2 | 华东 | 1350 | SNCR+SDS+DS+AC+BF | 17.66±0.33 | 55.33±0.28 | 4.00 | 5.35 | 35.58 |
MSWI3 | 华东 | 770 | SNCR+DS+AC+BF+WS+SCR | 17.22±0.34 | 56.45±0.74 | 5.62 | 8.79 | 27.66 |
MSWI4 | 华北 | 1000 | SDS+DS+AC+BF | 15.28±0.22 | 48.62±0.63 | 3.06 | 5.27 | 34.20 |
MSWI5 | 华东 | 800 | SNCR+DS+AC+BF+WS+GGH | 16.74±0.23 | 63.18±0.57 | 6.13 | 6.69 | 30.69 |
MSWI6 | 华南 | 1200 | SNCR+SDS+DS+AC+BF | 17.57±0.15 | 49.28±0.20 | 4.33 | 6.76 | 36.49 |
表1 生活垃圾焚烧厂概况和飞灰中部分元素含量
Table 1 General information of the municipal solid waste incinerators and content of some elements in the APC residues
焚烧厂 | 所在区域 | 处理规模/(t·d-1) | 烟气净化 处理工艺 | 飞灰可溶性氯 含量/% | 飞灰溶解性盐含量/% | 飞灰中Na含量/% | 飞灰中K含量/% | 飞灰中Ca含量/% |
---|---|---|---|---|---|---|---|---|
MSWI1 | 华中 | 1500 | SNCR+SDS+AC+BF | 15.87±0.17 | 53.59±0.11 | 4.04 | 5.44 | 39.89 |
MSWI2 | 华东 | 1350 | SNCR+SDS+DS+AC+BF | 17.66±0.33 | 55.33±0.28 | 4.00 | 5.35 | 35.58 |
MSWI3 | 华东 | 770 | SNCR+DS+AC+BF+WS+SCR | 17.22±0.34 | 56.45±0.74 | 5.62 | 8.79 | 27.66 |
MSWI4 | 华北 | 1000 | SDS+DS+AC+BF | 15.28±0.22 | 48.62±0.63 | 3.06 | 5.27 | 34.20 |
MSWI5 | 华东 | 800 | SNCR+DS+AC+BF+WS+GGH | 16.74±0.23 | 63.18±0.57 | 6.13 | 6.69 | 30.69 |
MSWI6 | 华南 | 1200 | SNCR+SDS+DS+AC+BF | 17.57±0.15 | 49.28±0.20 | 4.33 | 6.76 | 36.49 |
样品 | 实际沉降速度/(10-5 m·s-1) | 飞灰的平均粒径D50/(10-6 m) | 理论沉降速度/(10-5 m·s-1) | ||||
---|---|---|---|---|---|---|---|
A1 | 1314±3 | 1060±1 | 9.794 | 1.40±0.05 | 1.408 | 68.3 | 46.05 |
A2 | 1287±7 | 1078±1 | 9.794 | 1.35±0.05 | 2.929 | 19.3 | 3.138 |
A3 | 1248±2 | 1073±1 | 9.794 | 1.40±0.05 | 1.670 | 29.9 | 6.081 |
A4 | 1260±6 | 1069±1 | 9.794 | 1.40±0.10 | 3.780 | 37.8 | 10.61 |
A5 | 1311±7 | 1084±1 | 9.794 | 1.50±0.10 | 2.568 | 34.0 | 9.519 |
A6 | 1280±10 | 1070±1 | 9.794 | 1.55±0.05 | 6.620 | 39.5 | 11.50 |
表2 飞灰水洗悬浮液重力沉降速度的计算参数和结果
Table 2 Calculation parameters and results for gravity sedimentation velocity of the APC residues suspensions
样品 | 实际沉降速度/(10-5 m·s-1) | 飞灰的平均粒径D50/(10-6 m) | 理论沉降速度/(10-5 m·s-1) | ||||
---|---|---|---|---|---|---|---|
A1 | 1314±3 | 1060±1 | 9.794 | 1.40±0.05 | 1.408 | 68.3 | 46.05 |
A2 | 1287±7 | 1078±1 | 9.794 | 1.35±0.05 | 2.929 | 19.3 | 3.138 |
A3 | 1248±2 | 1073±1 | 9.794 | 1.40±0.05 | 1.670 | 29.9 | 6.081 |
A4 | 1260±6 | 1069±1 | 9.794 | 1.40±0.10 | 3.780 | 37.8 | 10.61 |
A5 | 1311±7 | 1084±1 | 9.794 | 1.50±0.10 | 2.568 | 34.0 | 9.519 |
A6 | 1280±10 | 1070±1 | 9.794 | 1.55±0.05 | 6.620 | 39.5 | 11.50 |
图4 飞灰水洗悬浮液固液分离参数随离心转速(离心时间=15min)和离心时间(离心转速=3000 r·min-1)的变化
Fig.4 Changes of separation indexes of the APC residues suspensions with centrifugal speed (centrifugal time = 15 min) and centrifugal time (centrifugal speed = 3000 r·min-1)
样品 | 5 min内可以完全沉降的最小飞灰粒径/(10-6 m) | 5 min内不能完全沉降的飞灰累积体积密度/% |
---|---|---|
A1 | 2.59 | 2.01 |
A2 | 2.80 | 6.90 |
A3 | 3.12 | 7.93 |
A4 | 2.99 | 2.43 |
A5 | 2.84 | 5.98 |
A6 | 3.00 | 4.74 |
表3 离心沉降速度计算参数(离心转速3000 r·min-1)
Table 3 Calculation parameters of centrifugal sedimentation rate at 3000 r·min-1 centrifugal speed
样品 | 5 min内可以完全沉降的最小飞灰粒径/(10-6 m) | 5 min内不能完全沉降的飞灰累积体积密度/% |
---|---|---|
A1 | 2.59 | 2.01 |
A2 | 2.80 | 6.90 |
A3 | 3.12 | 7.93 |
A4 | 2.99 | 2.43 |
A5 | 2.84 | 5.98 |
A6 | 3.00 | 4.74 |
图8 3种固液分离方式分离后上清液/滤液中TS浓度及显著性差异
Fig.8 Concentration of TS and significant difference in supernatant/filtrate separated by three solid-liquid separation methods
图9 3种固液分离方式分离后上清液/滤液中Ca、K、Na浓度及显著性差异
Fig.9 Concentration and significant difference of Ca, K, Na in supernatant/filtrate separated by three solid-liquid separation methods
1 | Zhao X G, Jiang G W, Li A, et al. Technology, cost, a performance of waste-to-energy incineration industry in China[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 115-130. |
2 | Quina M J, Bordado J C, Quinta-Ferreira R M. Treatment and use of air pollution control residues from MSW incineration: an overview[J]. Waste Management, 2008, 28(11): 2097-2121. |
3 | Xu P, Zhao Q L, Qiu W, et al. Microstructure and strength of alkali-activated bricks containing municipal solid waste incineration (MSWI) fly ash developed as construction materials[J]. Sustainability, 2019, 11(5): 1283. |
4 | 国家统计局. 2021中国统计年鉴[M]. 北京: 中国统计出版社, 2022. |
National Bureau of Statistics. 2021 China Statistical Yearbook[M]. Beijing: China Statistic Press, 2022. | |
5 | 章骅, 于思源, 邵立明, 等. 烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J]. 环境科学, 2018, 39(1): 467-476. |
Zhang H, Yu S Y, Shao L M, et al. Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J]. Environmental Science, 2018, 39(1): 467-476. | |
6 | Xia Y, Zhang H, Phoungthong K, et al. Leaching characteristics of calcium-based compounds in MSWI residues: from the viewpoint of clogging risk[J]. Waste Management, 2015, 42: 93-100. |
7 | Chen X F, Bi Y F, Zhang H B, et al. Chlorides removal and control through water-washing process on MSWI fly ash[J]. Procedia Environmental Sciences, 2016, 31: 560-566. |
8 | Chimenos J M, Fernández A I, Cervantes A, et al. Optimizing the APC residue washing process to minimize the release of chloride and heavy metals[J]. Waste Management, 2005, 25(7): 686-693. |
9 | 白晶晶, 张增强, 闫大海, 等. 水洗对焚烧飞灰中氯及重金属元素的脱除研究[J]. 环境工程, 2012, 30(2): 104-108. |
Bai J J, Zhang Z Q, Yan D H, et al. Study on the removal of chlorine and heavy metals in incineration fly ash during water-washing process[J]. Environmental Engineering, 2012, 30(2): 104-108. | |
10 | 王瑞恒, 何品晶, 吕凡, 等. 利用电渗析浓缩飞灰水洗液并回收工业盐[J]. 环境工程学报, 2022, 16(7): 2365-2373. |
Wang R H, He P J, Lü F, et al. Concentration of fly ash eluate by electrodialysis and recovery of industrial salt[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2365-2373. | |
11 | Chen W F, Wang Y G, Sun Y M, et al. Release of soluble ions and heavy metal during fly ash washing by deionized water and sodium carbonate solution[J]. Chemosphere, 2022, 307: 135860. |
12 | Li M J, Chen J, Lin X Q, et al. Study on three-stage counter-current water washing desalination characteristics and mechanism of high chlorine waste incineration fly ash[J]. Processes, 2022, 10(12): 2540. |
13 | Ferraro A, Farina I, Race M, et al. Pre-treatments of MSWI fly-ashes: a comprehensive review to determine optimal conditions for their reuse and/or environmentally sustainable disposal[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(3): 453-471. |
14 | Dontriros S, Likitlersuang S, Janjaroen D. Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): effect of acid-base solutions[J]. Waste Management, 2020, 101: 44-53. |
15 | Huang H G, Liu W, Zhang L, et al. A microscopic and quantitative analysis on the separation of chloride ion by fly ash washing: effect of liquid-to-solid ratio, washing time and temperature[J]. Environmental Science and Pollution Research, 2022, 29(24): 36208-36215. |
16 | 杨晓惠, 冯春宇, 魏纳. 固液分离原理与工业水处理装置[M]. 成都: 电子科技大学出版社, 2017: 56-58+63-64. |
Yang X H, Feng C Y, Wei N. Principle of Solid-Liquid Separation and Industrial Water Treatment Device[M]. Chengdu: University of Electronic Science and Technology of China Press, 2017: 56-58+63-64. | |
17 | 吴忆宁, 李永峰. 基础环境化学工程原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017: 102-103. |
Wu Y N, Li Y F. Principles of Basic Environmental Chemical Engineering[M]. Harbin: Harbin Institute of Technology Press, 2017: 102-103. | |
18 | 赵文玉, 林华, 许立巍. 工业水处理技术[M]. 成都: 电子科技大学出版社, 2019: 43-47. |
Zhao W Y, Lin H, Xu L W. Industrial Water Treatment Technology[M]. Chengdu: University of Electronic Science and Technology of China Press, 2019: 43-47. | |
19 | 朱延臣, 顾军, 张国亮, 等. 两级串联卧螺离心机用于飞灰水洗料浆固液分离试验研究[J]. 环境工程, 2015, 33(9): 121-124. |
Zhu Y C, Gu J, Zhang G L, et al. Study of solid-liquid separation test on fly ash water slurry using two-stage series decanter centrifuge[J]. Environmental Engineering, 2015, 33(9): 121-124. | |
20 | 吴成强, 蔡沈燕, 邵倩, 等. 生活垃圾焚烧飞灰水洗脱氯工程化研究与应用[J]. 中国给水排水, 2020, 36(22): 152-155. |
Wu C Q, Cai S Y, Shao Q, et al. Research and application of incineration fly ash dechlorination project by washing[J]. China Water & Wastewater, 2020, 36(22): 152-155. | |
21 | 吴波, 冯雪, 古丹,等. 污泥离心脱水系统运行参数优化研究[J]. 石化技术, 2015, 22(9): 9-10. |
Wu B, Feng X, Gu D, et al. Optimization of operating parameters for centrifugal sludge dewatering system[J]. Petrochemical Industry Technology, 2015, 22(9): 9-10. | |
22 | 毛飞燕, 马以超, 李杰, 等. 含油污泥离心脱水关键影响因素分析[J]. 环境污染与防治, 2018, 40(5): 539-543. |
Mao F Y, Ma Y C, Li J, et al. Study on the key influencing factors of centrifugal dehydration of oily sludge[J]. Environmental Pollution & Control, 2018, 40(5): 539-543. | |
23 | 国家环境保护总局,国家质量监督检验检疫总局. 危险废物鉴别标准 浸出毒性鉴别: [S]. 北京: 中国环境出版社, 2007. |
State Environmental Protection Administration of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Identification standards for hazardous wastes—Identification for extraction toxicity: [S]. Beijing: China Environmental Science Press, 2007. | |
24 | 国家环境保护总局. 水质 全盐量的测定 重量法: [S]. 北京: 中国环境科学出版社, 2000. |
State Environmental Protection Administration of the People’s Republic of China. Water quality—Determination of total salt—Gravimetric method: [S]. Beijing: China Environmental Science Press, 2000. | |
25 | 国家环境保护局. 水质 悬浮物的测定 重量法: [S]. 北京: 中国标准出版社, 1990. |
State Environmental Protection Administration of the People’s Republic of China. Water quality—Determination of suspended substance—Gravimetric method: [S]. Beijing: Standards Press of China, 1990. | |
26 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业循环冷却水和锅炉用水中固体物质的测定: [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Water for industrial circulating cooling system and boiler—Determination of solids matter: [S]. Beijing: Standards Press of China, 2008. | |
27 | 国家环境保护总局. 污水综合排放标准: [S]. 北京: 中国标准出版社, 1998. |
State Environmental Protection Administration of the People’s Republic of China. Integrated wastewater discharge standard: [S]. Beijing: Standards Press of China, 1998. | |
28 | 高俊发, 王社平. 污水处理厂工艺设计手册[M]. 北京: 化学工业出版社, 2003: 76+88-90. |
Gao J F, Wang S P. Process Design Manual of Sewage Treatment Plant[M]. Beijing: Chemical Industry Press, 2003: 76+88-90. | |
29 | 何培培, 余光辉, 邵立明, 等. 污泥中蛋白质和多糖的分布对脱水性能的影响[J]. 环境科学, 2008, 29(12): 3457-3461. |
He P P, Yu G H, Shao L M, et al. Effect of proteins and polysaccharides in sewage sludge on dewaterability[J]. Environmental Science, 2008, 29(12): 3457-3461. | |
30 | 陆香玉, 俞海祥, 陈亚, 等. 化学絮凝与电絮凝调理污泥脱水性能影响作用的对比研究[J]. 环境科学学报, 2022, 42(3): 257-267. |
Lu X Y, Yu H X, Chen Y, et al. Comparison of the effects of chemical flocculation and electric flocculation conditioning on sludge dewatering performance[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 257-267. | |
31 | 施钦, 刘宇川, 谭学才, 等. 电絮凝法调理剩余污泥CST的影响因素分析[J]. 化工技术与开发, 2021, 50(11): 45-48. |
Shi Q, Liu Y C, Tan X C, et al. Influencing factors analysis of CST conditioning of surplus sludge by electric flocculation[J]. Technology & Development of Chemical Industry, 2021, 50(11): 45-48. | |
32 | 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005: 6. |
Zhang R D. Spatial Variation Theory and Its Application[M]. Beijing: Science Press, 2005: 6. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[3] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 杨克, 贾岳, 纪虹, 邢志祥, 蒋军成. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究[J]. 化工学报, 2023, 74(8): 3597-3607. |
[6] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[7] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[8] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[9] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[12] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[13] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[14] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 279
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||