化工学报 ›› 2023, Vol. 74 ›› Issue (5): 1847-1861.DOI: 10.11949/0438-1157.20230075
姚晓宇1(), 沈俊1(), 李健1, 李振兴1, 康慧芳1, 唐博2,3,4, 董学强2,3,4(), 公茂琼2,3,4
收稿日期:
2023-02-03
修回日期:
2023-04-10
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
沈俊,董学强
作者简介:
姚晓宇(1995—),男,博士后,yaoxiaoyu22@bit.edu.cn
基金资助:
Xiaoyu YAO1(), Jun SHEN1(), Jian LI1, Zhenxing LI1, Huifang KANG1, Bo TANG2,3,4, Xueqiang DONG2,3,4(), Maoqiong GONG2,3,4
Received:
2023-02-03
Revised:
2023-04-10
Online:
2023-05-05
Published:
2023-06-29
Contact:
Jun SHEN, Xueqiang DONG
摘要:
近、超临界流体具备优良的输运和热力学性质,可广泛应用于化工、环境、机械和热能利用等领域。由于临界点附近包括流体密度在内的热物性会发生大幅改变,因此准确确定流体的临界点,包括临界温度、临界压力和临界密度数据,对指导热力循环和系统部件设计优化有重要意义。目前实验测量是获取高精度临界参数的最直接方式。本文首先概述了气液临界点理论、临界参数的研究现状及其典型应用场景;其次,综述了目前临界参数主要的测量方法,包括定容法、变容法、流动法、脉冲加热法、密度直线中径定律法、压力-体积-温度(p-V-T)关系法、准静态热分析法和物理性质法等,总结了这些方法的优缺点、适用范围、准确性和主要研究机构;最后,探讨了临界参数测量方法当前面临的挑战和未来发展趋势。
中图分类号:
姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861.
Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures[J]. CIESC Journal, 2023, 74(5): 1847-1861.
图2 变容法实验装置原理图(Burrnet膨胀法)[59]A—可视化容器;B—变容容器;C—差压零压检测器;D—铝块;E—恒温油浴;F—叶轮;G—温控器;H—铂电阻温度计;I—冷阱;J—石英晶体压力表;V1—截止阀;V2—分离阀
Fig.2 Schematic diagram of the variable-volume method apparatus (Burrnet expansion method)[59]A—optical cell; B—variable-volume vessel; C—differential null-pressure detector; D—aluminum blocks; E—constant-temperature oil bath; F—impeller; G—temperature controller; H—platinum resistance thermometer; I—cold trap; J—quartz crystal pressure gauge; V1—cutoff valve; V2—separation valve
图3 变容法实验装置原理图(金属波纹管法)[60-61]A—压力容器中的金属波纹管;B—可视化容器;C—恒温油槽;D—铂电阻温度计;E1—加热器(1.2 kW);E2—加热器(0.3 kW);F—搅拌器
Fig.3 Schematic diagram of the variable-volume apparatus (metal-bellows method)[60-61]A—metal-bellows in pressure vessel; B—optical cell; C—thermostatic oil bath; D—platinum resistance thermometer; E1—heater (1.2 kW); E2—heater (0.3 kW); F—stirrer
图4 中国科学院理化技术研究所变容法实验装置原理图(金属波纹管法)[62]1—恒温油浴;2—波纹管体积计;3—铂电阻温度计;4—制冷机;5—搅拌器;6—电机;7—真空泵;8—电子天平;9—气瓶;10—压力传感器;11—压力和温度读数系统;12—电桥;13—恒压电流源;14—平衡釜;15—可视化窗口;16—电加热器
Fig.4 Schematic diagram of the variable-volume apparatus (metal-bellows method) from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences[62]1—silicone oil bath; 2—metal-bellow volumeter; 3—platinum resistance thermometers; 4—refrigerator; 5—trirrer; 6—motor; 7—vacuum pump; 8—electronic balance; 9—gas cylinder; 10—pressure transducers; 11—pressure and temperature indicator; 12—bridge; 13—stabilized voltage supply; 14—equilibrium cell; 15—view windows; 16—electrical heater
图5 天津大学变容法实验装置原理图(活塞法)[65]1—螺杆泵;2—压力表;3—霍尔探头;4—保温夹套;5—高压釜;6—位移计;7—O圈;8—搅拌器;9—石英窗;10—取样阀;11—压力传感器; 12—热电偶;13—小型不锈钢容器;14—温度计;15—真空计;16—钢球
Fig.5 Schematic diagram of the variable-volume method apparatus (piston method) from Tianjin University[65]1—screw-driven pump; 2—pressure meter; 3—hall probe; 4—heat jacket; 5—autoclave; 6—position; 7—O-ring; 8—stirrer; 9—quartz window; 10—sampling valves; 11—pressure sensor; 12—thermocouple; 13—small steel vessel; 14—thermometer; 15—vacuum meter; 16—steel bulb
图6 中国科学技术大学变容法实验装置原理图(活塞法)[65]1—样品A容器;2—样品B容器;3~6—阀门;7—真空泵;8—可视化容器;9—压力传感器;10—铂电阻温度计;11—搅拌器;12—加热器;13—数据获取仪器;14—温度控制器;15—计算机;16—气相色谱仪
Fig.6 Schematic diagram of the variable-volume method apparatus (piston method) from University of Science and Technology of China[65]1—sample cylinder A; 2—sample cylinder B; 3-6—valves; 7—vacuum pump; 8—optical cell; 9—pressure transducer; 10—platinum resistance thermometer; 11—stirrer; 12—heater; 13—data acquisition instrument; 14—temperature controller; 15—computer; 16—gas chromatograph
图7 流动法实验装置原理图[67]PS—压力源;VPr—容积压力;SP—注射泵;VP—真空泵;HE—换热器;VC—可视化容器;AT—空气浴;TP—铂电阻温度计套管;PT—压力传感器;TR—温度调节器;FV—流量调节阀;DAS—数据获取系统;CPU—中央处理单元;V—阀门
Fig.7 Schematic diagram of the flow method apparatus[67]PS—pressurized source; VPr—volumetric press; SP—syringe pump; VP—vacuum pump; HE—heat exchanger; VC—view cell; AT—air thermostat bath (oven); TP—platinum resistance temperature probe; PT—pressure transducer; TR—temperature regulator; FV—flow regulation valve; DAS—data acquisition system; CPU—central processor unit; V—valve
图8 脉冲加热法实验装置原理图[68]1—热电偶;2—陶瓷绝缘体;3—熔炉;4—测量管;5—待测液体;6—主体;7—法兰;8—封闭液体
Fig.8 Schematic diagram of the pulse-heating method apparatus[68]1—thermocouple; 2—ceramic thermal insulator; 3—furnace; 4—measuring probe; 5—liquid under study; 6—body; 7—flange; 8—confining liquid
图10 密度直线中径测量密度与流体真实临界密度的偏差示意图[72]
Fig.10 A schematic diagram of the deviation between the critical density measured by rectilinear diameter law and the true critical density of fluid[72]
图12 准静态热分析法实验装置原理图[39]1—压力计;2—空气浴;3—差动膜分离器;4—阀门;5,8—铂电阻温度计;6—数字微欧姆表;7—数字高精度温度控制器; 9—调节加热器; 10—风扇;11,12—铂敏感元件;13—多通道模数转换器;14~16—热电偶;17—数字电压表;18—静重式压力计;19—毛细管;20—微安培表
Fig.12 Schematic diagram of the quasi-static thermograms method[39]1—piezometer; 2—air thermostat; 3—differential membrane separator; 4—valve; 5,8—platinum resistance thermometer; 6—digital micro-ohmmeter; 7—digital high precision temperature controller; 9—regulating heater; 10—fan; 11,12—platinum sensitive element; 13—multichannel analog-to-digital converter; 14-16—differential thermocouples; 17—digital voltmeter; 18—dead-weight pressure gauge; 19—capillary; 20—micro amperemeter
图13 声学法实验装置原理图[79]A—放大器;C—声学池;HP—手推泵;HPB—高压气体罐;O—示波器;P—压力传感器;PG—脉冲发生器;R—声波接收器;S—声波发送器; T—热电偶
Fig.13 Schematic diagram of the acoustic method apparatus[79]A—amplifier; C—acoustic cell; HP—hand pump; HPB—high-pressure bomb; O—oscilloscope; P—pressure transducer; PG—pulse generator; R—acoustic receiver; S—acoustic sender; T—thermocouple
测量方法 | 测量范围 | 测量精度 | 优点 | 缺点 |
---|---|---|---|---|
定容法 | 热稳定物质 | 较高 | 简单、可靠 | 主观性判定临界点,实验效率低 |
变容法 | 热稳定物质 | 较高 | 实验效率高 | 主观性判定临界点,系统复杂度高,需精密测量或计算体积 |
流动法 | 热不稳定物质 | 较高 | 能测量热不稳定物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动 |
脉冲加热法 | 热不稳定物质 | 较低 | 能测量易受热分解物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动,系统复杂度高 |
密度直线中径定律法 | 热稳定物质 | 较低 | 简单,能以气相和液相饱和 密度数据拟合临界参数 | 近临界区数据受主观性观测影响大,拟合精度低,密度中径是否符合直线规律存在争议 |
压力-体积-温度 (p-V-T)关系法 | 热稳定物质 | 较低 | 拟合精度高 | 需要拟合数据较多,效率低 |
准静态热分析法 | 热稳定物质 | 较高 | 判断临界点准确客观,能同时 测量近临界区比定容热容 | 实验效率低 |
物理性质法 | 热不稳定物质 | 较低 | 判断临界点客观 | 发展不成熟,测量精度低 |
表1 临界p-ρ-T-x特性测量方法总结
Table 1 Summary of measurement methods for critical p-ρ-T-x parameters
测量方法 | 测量范围 | 测量精度 | 优点 | 缺点 |
---|---|---|---|---|
定容法 | 热稳定物质 | 较高 | 简单、可靠 | 主观性判定临界点,实验效率低 |
变容法 | 热稳定物质 | 较高 | 实验效率高 | 主观性判定临界点,系统复杂度高,需精密测量或计算体积 |
流动法 | 热不稳定物质 | 较高 | 能测量热不稳定物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动 |
脉冲加热法 | 热不稳定物质 | 较低 | 能测量易受热分解物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动,系统复杂度高 |
密度直线中径定律法 | 热稳定物质 | 较低 | 简单,能以气相和液相饱和 密度数据拟合临界参数 | 近临界区数据受主观性观测影响大,拟合精度低,密度中径是否符合直线规律存在争议 |
压力-体积-温度 (p-V-T)关系法 | 热稳定物质 | 较低 | 拟合精度高 | 需要拟合数据较多,效率低 |
准静态热分析法 | 热稳定物质 | 较高 | 判断临界点准确客观,能同时 测量近临界区比定容热容 | 实验效率低 |
物理性质法 | 热不稳定物质 | 较低 | 判断临界点客观 | 发展不成熟,测量精度低 |
测量方法 | 研究机构 | 国家 | 标准不确定度 |
---|---|---|---|
定容法 | 奥尔登堡大学 [ | 德国 | 10 kPa (pc)、0.1 K (Tc)、2% (ρc)、 0.0005 (x) |
定容法 | 卡尔斯鲁厄大学 [ | 德国 | 6 kPa (pc)、 0.06 K (Tc)、 2% (ρc)、 0.003 (x) |
定容法 | 华东理工大学 [ | 中国 | 30 kPa (pc)、 0.3 K (Tc)、 N/A (ρc)、 0.003 (x) |
定容法 | 清华大学 [ | 中国 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.7% (ρc)、 N/A (x) |
定容法 | 马来亚大学 [ | 马来西亚 | 50 kPa (pc)、 0.2 K (Tc)、 N/A (ρc)、 0.015 (x) |
定容法/直线法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所[ | 俄罗斯 | 0.05% (pc)、 0.015 K (Tc)、 0.15% (ρc)、 N/A (x) |
定容法/直线法 | 西安现代化学研究所 [ | 中国 | 24 kPa (pc)、 0.21 K (Tc)、 6.4 kg/m3 (ρc)、 0.0009 (x) |
定容法/流体p-V-T关系法 | 俄罗斯科学院油气研究所 [ | 俄罗斯 | 70 kPa (pc)、 2 K (Tc)、 N/A (ρc)、 0.015 (x) 1.8 kPa (p)、 0.05 K (T)、 0.0003 cm3/g (V)、 0.25 (x) |
变容法/流体p-V-T关系法 | 九州大学 [59,41] | 日本 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.15% (ρc)、 0.005 (x) |
变容法 | 庆应义塾大学 [61,60] | 日本 | 1.6 kPa (pc)、 0.016 K (Tc)、 0.18% (ρc)、 0.009 (x) |
变容法 | 中国科学技术大学 [ | 中国 | 3.1 kPa (pc)、 0.01 K (Tc)、 0.0015 (x) |
变容法 | 丽水国立大学 [ | 韩国 | 30 kPa (pc)、 0.1 K (Tc)、 0.001 (x) |
变容法 | 天津大学 [ | 中国 | 100 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
变容法 | 中国科学院理化技术研究所[ | 中国 | 10.5 kPa (pc)、 0.025 K (Tc)、 0.3% (ρc)、 0.005 (x) |
流动法 | 洛林大学 [ | 法国 | 8 kPa (pc)、 0.05 K (Tc)、 0.000015 (x) |
流动法 | 西安交通大学 [ | 中国 | 5.2 kPa (pc)、 0.2 K (Tc)、 0.006 (x) |
流动法/流体p-V-T关系法 | 萨拉格萨大学 [ | 西班牙 | 34 kPa (pc)、 0.32 K (Tc)、 0.1% (ρc)、 0.005 (x) |
脉冲加热法 | 俄罗斯科学院乌拉尔分院 [ | 俄罗斯 | 80 kPa (pc)、 0.1 K (Tc)、 N/A (x) |
准静态热分析法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所 [ | 俄罗斯 | 0.025% (pc)、 0.075 K (Tc)、 0.25% (ρc)、 0.00005 (x) |
声学法 | 诺丁汉大学 [ | 英国 | 10 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
表2 近30年内较活跃的临界p-ρ-T-x特性测量机构及其测量原理
Table 2 Active research institutions of critical p-ρ-T-x parameters measurement in recent 30 years and their measurement principles
测量方法 | 研究机构 | 国家 | 标准不确定度 |
---|---|---|---|
定容法 | 奥尔登堡大学 [ | 德国 | 10 kPa (pc)、0.1 K (Tc)、2% (ρc)、 0.0005 (x) |
定容法 | 卡尔斯鲁厄大学 [ | 德国 | 6 kPa (pc)、 0.06 K (Tc)、 2% (ρc)、 0.003 (x) |
定容法 | 华东理工大学 [ | 中国 | 30 kPa (pc)、 0.3 K (Tc)、 N/A (ρc)、 0.003 (x) |
定容法 | 清华大学 [ | 中国 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.7% (ρc)、 N/A (x) |
定容法 | 马来亚大学 [ | 马来西亚 | 50 kPa (pc)、 0.2 K (Tc)、 N/A (ρc)、 0.015 (x) |
定容法/直线法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所[ | 俄罗斯 | 0.05% (pc)、 0.015 K (Tc)、 0.15% (ρc)、 N/A (x) |
定容法/直线法 | 西安现代化学研究所 [ | 中国 | 24 kPa (pc)、 0.21 K (Tc)、 6.4 kg/m3 (ρc)、 0.0009 (x) |
定容法/流体p-V-T关系法 | 俄罗斯科学院油气研究所 [ | 俄罗斯 | 70 kPa (pc)、 2 K (Tc)、 N/A (ρc)、 0.015 (x) 1.8 kPa (p)、 0.05 K (T)、 0.0003 cm3/g (V)、 0.25 (x) |
变容法/流体p-V-T关系法 | 九州大学 [59,41] | 日本 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.15% (ρc)、 0.005 (x) |
变容法 | 庆应义塾大学 [61,60] | 日本 | 1.6 kPa (pc)、 0.016 K (Tc)、 0.18% (ρc)、 0.009 (x) |
变容法 | 中国科学技术大学 [ | 中国 | 3.1 kPa (pc)、 0.01 K (Tc)、 0.0015 (x) |
变容法 | 丽水国立大学 [ | 韩国 | 30 kPa (pc)、 0.1 K (Tc)、 0.001 (x) |
变容法 | 天津大学 [ | 中国 | 100 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
变容法 | 中国科学院理化技术研究所[ | 中国 | 10.5 kPa (pc)、 0.025 K (Tc)、 0.3% (ρc)、 0.005 (x) |
流动法 | 洛林大学 [ | 法国 | 8 kPa (pc)、 0.05 K (Tc)、 0.000015 (x) |
流动法 | 西安交通大学 [ | 中国 | 5.2 kPa (pc)、 0.2 K (Tc)、 0.006 (x) |
流动法/流体p-V-T关系法 | 萨拉格萨大学 [ | 西班牙 | 34 kPa (pc)、 0.32 K (Tc)、 0.1% (ρc)、 0.005 (x) |
脉冲加热法 | 俄罗斯科学院乌拉尔分院 [ | 俄罗斯 | 80 kPa (pc)、 0.1 K (Tc)、 N/A (x) |
准静态热分析法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所 [ | 俄罗斯 | 0.025% (pc)、 0.075 K (Tc)、 0.25% (ρc)、 0.00005 (x) |
声学法 | 诺丁汉大学 [ | 英国 | 10 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
1 | White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J]. Energy and Fuels, 2005, 19(3): 659-724. |
2 | Queiroz J P S, Bermejo M D, Mato F, et al. Supercritical water oxidation with hydrothermal flame as internal heat source: efficient and clean energy production from waste[J]. The Journal of Supercritical Fluids, 2015, 96: 103-113. |
3 | Rothenfluh T, Schuler M J, Von Rohr P R. Penetration length studies of supercritical water jets submerged in a subcritical water environment using a novel optical Schlieren method[J]. The Journal of Supercritical Fluids, 2011, 57(2): 175-182. |
4 | Menon S K, Boettcher P A, Ventura B, et al. Hot surface ignition of n-hexane in air[J]. Combustion and Flame, 2016, 163: 42-53. |
5 | Kojima J J, Hegde U G, Gotti D J, et al. Flame structure of supercritical ethanol/water combustion in a co-flow air stream characterized by Raman chemical analysis[J]. The Journal of Supercritical Fluids, 2020, 166: 104995. |
6 | Reverchon E, Torino E, Dowy S, et al. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization[J]. Chemical Engineering Journal, 2009, 156(2): 446-458. |
7 | Couto R, Chambon S, Aymonier C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices[J]. Chemical Communications (Cambridge, England), 2015, 51(6): 1008-1011. |
8 | Wu C, Yan X J, Wang S S, et al. System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery[J]. Energy, 2016, 100: 391-400. |
9 | Li M J, Zhu H H, Guo J Q, et al. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries[J]. Applied Thermal Engineering, 2017, 126: 255-275. |
10 | Pan L H, Freifeld B, Doughty C, et al. Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid[J]. Geothermics, 2015, 53: 100-113. |
11 | Hsieh J C, Lin D T W, Wei C H, et al. The heat extraction investigation of supercritical carbon dioxide flow in heated porous media[J]. Energy Procedia, 2014, 61: 262-265. |
12 | Crua C, Manin J, Pickett L M. On the transcritical mixing of fuels at diesel engine conditions[J]. Fuel, 2017, 208: 535-548. |
13 | Falgout Z, Rahm M, Sedarsky D, et al. Gas/fuel jet interfaces under high pressures and temperatures[J]. Fuel, 2016, 168: 14-21. |
14 | Wensing M, Vogel T, Götz G. Transition of diesel spray to a supercritical state under engine conditions[J]. International Journal of Engine Research, 2016, 17(1):108-119. |
15 | Polikhronidi N G, Batyrova R G, Wu J T, et al. Simultaneously measurements of the PVT and thermal-pressure coefficient of benzene in the critical and supercritical regions[J]. Journal of Molecular Liquids, 2019, 293: 111381. |
16 | 吴子睿, 孙瑞, 石凌峰, 等. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
Wu Z R, Sun R, Shi L F, et al. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures[J]. CIESC Journal, 2022, 73(4): 1483-1492. | |
17 | Van K P H, Scott R L. Critical lines and phase equilibria in binary van der Waals mixtures[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934—1990), 1980, 298(1442): 495-540. |
18 | Raju M, Banuti D T, Ma P C, et al. Widom lines in binary mixtures of supercritical fluids[J]. Scientific Reports, 2017, 7(1): 1-10. |
19 | Banuti D T. Crossing the Widom-line—supercritical pseudo-boiling[J]. The Journal of Supercritical Fluids, 2015, 98: 12-16. |
20 | Simeoni G G, Bryk T, Gorelli F A, et al. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J]. Nature Physics, 2010, 6(7): 503-507. |
21 | Espinosa J R, Garaizar A, Vega C, et al. Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles[J]. The Journal of Chemical Physics, 2019, 150(22):224510. |
22 | Maxim F, Contescu C, Boillat P, et al. Visualization of supercritical water pseudo-boiling at Widom line crossover[J]. Nature Communications, 2019, 10(1): 1-11. |
23 | Straub J, Nitsche K. Isochoric heat capacity Cv at the critical point of SF6 under micro- and earth-gravity[J]. Fluid Phase Equilibria, 1993, 88: 183-208. |
24 | Meyer H, Zhong F. Equilibration and other dynamic properties of fluids near the liquid-vapor critical point[J]. Comptes Rendus Mécanique, 2004, 332(5/6): 327-343. |
25 | Hu Z C, Zhang X R. Piston effect induced by cross-boundary mass diffusion in a binary fluid mixture near its liquid-vapor critical point[J]. International Journal of Heat and Mass Transfer, 2019, 140: 691-704. |
26 | Khmelinskii I, Woodcock L V. Supercritical fluid gaseous and liquid states: a review of experimental results[J]. Entropy (Basel, Switzerland), 2020, 22(4):437. |
27 | Lee S, Lee J, Kim Y, et al. Quasi-equilibrium phase coexistence in single component supercritical fluids[J]. Nature Communications, 2021, 12(1): 1-7. |
28 | Abdulagatov A I, Stepanov G V, Abdulagatov I M. The critical properties of binary mixtures containing carbon dioxide: Krichevskii parameter and related thermodynamic properties[J]. High Temperature, 2007, 45(3): 408-424. |
29 | Jacob J, Kumar A, Anisimov M A, et al. Crossover from Ising to mean-field critical behavior in an aqueous electrolyte solution[J]. Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58(2): 2188-2200. |
30 | Berche B, Henkel M, Kenna R. Critical phenomena: 150 years since cagniard de la tour[J]. Journal of Physical Studies, 2009, 13(3):3001. |
31 | Lopez-Echeverry J S, Reif-Acherman S, Araujo-Lopez E. Peng-Robinson equation of state: 40 years through cubics[J]. Fluid Phase Equilibria, 2017, 447: 39-71. |
32 | Sadowski G. Special issue celebrating 30 years of SAFT[J]. Journal of Chemical & Engineering Data, 2020, 65(12): 5627. |
33 | Chou G F, Prausnitz J M. A phenomenological correction to an equation of state for the critical region[J]. AIChE Journal, 1989, 35(9): 1487-1496. |
34 | Kiselev S B, Friend D G. Cubic crossover equation of state for mixtures[J]. Fluid Phase Equilibria, 1999, 162(1/2): 51-82. |
35 | Wilson L C, Jasperson L V, VonNiederhausern D, et al. DIPPR project 851—thirty years of vapor-liquid critical point measurements and experimental technique development[J]. Journal of Chemical & Engineering Data, 2018, 63(9): 3408-3417. |
36 | Chirico R D, Frenkel M, Magee J W, et al. Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support[J]. Journal of Chemical & Engineering Data, 2013, 58(10): 2699-2716. |
37 | Bell I H, Wronski J, Quoilin S, et al. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2498-2508. |
38 | Onken U, Rarey-Nies J, Gmehling J. The Dortmund data bank: a computerized system for retrieval, correlation, and prediction of thermodynamic properties of mixtures[J]. International Journal of Thermophysics, 1989, 10(3): 739-747. |
39 | Abdulagatov I M, Bazaev A R, Bazaev E A, et al. Experimental study of the critical and supercritical phenomena in ternary mixture of water+1-propanol+n-hexane[J]. Journal of Molecular Liquids, 2020, 316: 113789. |
40 | Higashi Y, Sakoda N. Measurements of PvT properties, saturated densities, and critical parameters for 3, 3, 3-trifluoropropene (HFO1243zf)[J]. Journal of Chemical & Engineering Data, 2018, 63(10): 3818-3822. |
41 | Sakoda N, Higashi Y. Measurements of PvT properties, vapor pressures, saturated densities, and critical parameters for cis-1-chloro-2,3,3,3-tetrafluoropropene (R1224yd(Z))[J]. Journal of Chemical & Engineering Data, 2019, 64(9): 3983-3987. |
42 | Higashi Y, Tanaka K, Ichikawa T. Critical parameters and saturated densities in the critical region for trans-1, 3, 3, 3-tetrafluoropropene (HFO-1234ze(E))[J]. Journal of Chemical & Engineering Data, 2010, 55(4): 1594-1597. |
43 | Tanaka K, Akasaka R, Sakaue E, et al. Measurements of the critical parameters for cis-1,1,1,4,4,4-hexafluoro-2-butene[J]. Journal of Chemical & Engineering Data, 2017, 62(3): 1135-1138. |
44 | Duan Y Y, Shi L, Zhu M S, et al. Critical parameters and saturated density of trifluoroiodomethane (CF3I)[J]. Journal of Chemical & Engineering Data, 1999, 44(3): 501-504. |
45 | Fu Y D, Han L Z, Zhu M S. PVT properties, vapor pressures and critical parameters of HFC-32[J]. Fluid Phase Equilibria, 1995, 111(2): 273-286. |
46 | Liu X Y, Lan T, Wang C J, et al. Measurement of critical temperature and critical pressure of tert-butanol and alkane mixtures[J]. Journal of Molecular Liquids, 2020, 302: 112582. |
47 | Xin N, Liu Y, Guo X D, et al. Determination of critical properties for binary and ternary mixtures containing propanol and alkanes using a flow view-type apparatus[J]. The Journal of Supercritical Fluids, 2016, 108: 35-44. |
48 | Liu Y, Zhang Y, He M G, et al. Determination of the critical properties of C6-C10 n-alkanes and their binary systems using a flow apparatus[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3852-3857. |
49 | Lan T, Yao C Q, Liu X Y, et al. Measurements of critical properties of ethyl propionate with the gasoline components[J]. Journal of Molecular Liquids, 2021, 322: 114801. |
50 | Wu J T, Liu Z G, Wang B, et al. Measurement of the critical parameters and the saturation densities of dimethyl ether[J]. Journal of Chemical & Engineering Data, 2004, 49(3): 704-708. |
51 | Vostrikov S V, Pimerzin A A, Konnova M E, et al. Plotting of phase (vapor-liquid) transition surface near the critical point out of data from isochoric experiment. Experimental procedure[J]. Fluid Phase Equilibria, 2018, 462: 118-129. |
52 | Haynes W M. Hand Book of Chemistry and Physics[M]. 97th ed. London: Taylor & Francis Group, 2017: 67-91. |
53 | Bell Ian H, Demian R, Ala B, et al. Survey of data and models for refrigerant mixtures containing halogenated olefins[J]. Journal of Chemical & Engineering Data, 2021, 66(6): 2335-2354. |
54 | Ambrose D, Tsonopoulos C, Nikitin E D, et al. Vapor-liquid critical properties of elements and compounds (12): Review of recent data for hydrocarbons and non-hydrocarbons[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3444-3482. |
55 | Ambrose D, Young C L. Vapor-liquid critical properties of elements and compounds (1): An introductory survey[J]. Journal of Chemical & Engineering Data, 1995, 40(2): 345-357. |
56 | Bobbo S, Di Nicola G, Zilio C, et al. Low GWP halocarbon refrigerants: a review of thermophysical properties[J]. International Journal of Refrigeration, 2018, 90: 181-201. |
57 | Christian I, Sven H, Andreas G. Vapor pressures and vapor-liquid critical properties of four pentene isomers[J]. Journal of Chemical & Engineering Data, 2017, 62(9): 2837-2841. |
58 | Horstmann S, Fischer K, Gmehling J, et al. Experimental determination of the critical line for (carbon dioxide + ethane) and calculation of various thermodynamic properties for (carbon dioxide + n-alkane) using the PSRK model[J]. The Journal of Chemical Thermodynamics, 2000, 32(4): 451-464. |
59 | Uchida Y, Yasumoto M, Yamada Y, et al. Critical properties of four HFE + HFC binary systems: trifluoromethoxymethane (HFE-143m) + pentafluoroethane (HFC-125), + 1, 1, 1, 2-tetrafluoroethane (HFC-134a), + 1, 1, 1, 2, 3, 3, 3-heptafluoropropane (HFC-227ea), and + 1, 1, 1, 2, 3, 3-hexafluoropropane (HFC-236ea)[J]. Journal of Chemical & Engineering Data, 2004, 49: 1615-1621. |
60 | Sakabe A, Arai D, Miyamoto H, et al. Measurements of the critical parameters for {xNH3+(1-x)H2O} with x=(0.9098, 0.7757, 0.6808)[J]. The Journal of Chemical Thermodynamics, 2008, 40(10): 1527-1530. |
61 | Sato M, Masui G, Uematsu M. Critical parameters for ammonia[J]. The Journal of Chemical Thermodynamics, 2005, 37(9): 931-934. |
62 | Yao X Y, Dong X Q, Zhao Y X, et al. A new apparatus for measurement of the critical p-ρ-T properties based on the variable-volume method[J]. International Journal of Refrigeration, 2022, 136: 220-228. |
63 | Yao X Y, Dong X Q, Zhao Y X, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1243zf (3,3,3-trifluoropropene)[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2128-2135. |
64 | Yao X Y, Shen J, Kang H H, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1234yf (2,3,3,3-tetrafluoropro-1-ene)[J]. The Journal of Chemical Thermodynamics, 2023, 178: 106978. |
65 | 朱虎刚. 高压下单组分流体pVT性质和二元系统相平衡和临界曲线[D]. 天津: 天津大学, 2007: 34. |
Zhu H G. pVT properties of one-component fluid at high pressure and phase equilibrium and critical curve of binary system[D]. Tianjin: Tianjin University, 2007: 34. | |
66 | Zhang N, Hu P, Chen L X, et al. Measurements of critical properties of the binary mixture of 1,1,1-trifluoroethane (HFC-143a) +trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E))[J]. Journal of Chemical & Engineering Data, 2021, 66(7): 2717-2722. |
67 | Juntarachat N, Valtz A, Coquelet C, et al. Experimental measurements and correlation of vapor-liquid equilibrium and critical data for the CO2+R1234yf and CO2+R1234ze(E) binary mixtures[J]. International Journal of Refrigeration, 2014, 47: 141-152. |
68 | Nikitin E D, Popov A P. Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method[J]. Fluid Phase Equilibria, 2014, 380: 11-17. |
69 | Cornfeld A B, Carr H Y. Experimental evidence concerning the law of rectilinear diameter[J]. Physical Review Letters, 1972, 29(5): 320. |
70 | Nicoll J F. Critical phenomena of fluids: asymmetric Landau-Ginzburg-Wilson model[J]. Physical Review A, 1981, 24(4): 2203-2220. |
71 | Abdulagatov I M, Levina L N, Zakaryaev Z R, et al. The two-phase specific heat at constant volume of propane in the critical region[J]. Fluid Phase Equilibria, 1997, 127(1/2): 205-236. |
72 | Garrabos Y, Lecoutre C, Marre S, et al. Liquid-vapor rectilinear diameter revisited[J]. Physical Review. E, 2018, 97(2): 020101. |
73 | Young S. The vapor pressures, specific volumes, heat of vaporization, and critical constants of 300 pure organic substances[J]. Proc. Roy. Soc. Dublin NS, 1910, 21: 374. |
74 | Van Poolen L J, Jacobsen R T, Jahangiri M. Comparison of the critical liquid volume fraction to rectilinear-diameter methods for prediction of the critical density of ethylene and oxygen[J]. International Journal of Thermophysics, 1986, 7(3): 513-524. |
75 | Rzoska S J, Kalabiński J, Drozd-Rzoska A. Critical concentration in binary mixtures of limited miscibility[J]. Fluid Phase Equilibria, 2021, 540:112979. |
76 | Duschek W, Kleinrahm R, Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide (Ⅱ): Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve[J]. The Journal of Chemical Thermodynamics, 1990, 22(9): 841-864. |
77 | Andreas K, Robertson Duncan G, Aguiar Ricardo Ana I, et al. Probing vapor/liquid equilibria of near-critical binary gas mixtures by acoustic measurements[J]. The Journal of Physical Chemistry, 1996, 100(22): 9522-9526. |
78 | Kordikowski A, Robertson D G, Poliakoff M, et al. Acoustic determination of the critical surfaces in the ternary systems CO2 + CH2F2 + CF3CH2F and CO + C2H4 + CH3CHCH2 and in their binary subsystems[J]. Journal of Physical Chemistry B, 1997, 101(30): 5853-5862. |
79 | Ke J, Parrott A J, Sanchez-Vicente Y, et al. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage[J]. The Review of Scientific Instruments, 2014, 85(8): 085110. |
80 | Ke J, King P J, George M W, et al. Method for locating the vapor–liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor[J]. Analytical Chemistry, 2005, 77(1): 85-92. |
81 | Belyakov M Y, Gorodetskii E E, Kulikov V D, et al. Light-scattering anomaly in the vicinity of liquid-vapor critical point of multicomponent mixtures[J]. Chemical Physics, 2011, 379(1/2/3): 123-127. |
82 | Deng B L, Kanda Y, Chen L, et al. Visualization study of supercritical fluid convection and heat transfer in weightlessness by interferometry: a brief review[J]. Microgravity Science and Technology, 2017, 29(4): 275-295. |
83 | Lemmon E W, Huber M L, Mclinden M O. REFPROP 9.1[DB]. NIST Standard Reference Database, 2013. |
84 | Diefenbacher A, Türk M. Critical properties (pc, Tc, and ρc) and phase equilibria of binary mixtures of CO2, CHF3, CH2F2, and SF6 [J]. Fluid Phase Equilibria, 2001, 182(1/2): 121-131. |
85 | Li J F, Qin Z F, Wang G F, et al. Critical temperatures and pressures of several binary and ternary mixtures concerning the alkylation of 2-methylpropane with 1-butene in the presence of methane or carbon dioxide[J]. Journal of Chemical and Engineering Data, 2007, 52(5): 1736-1740. |
86 | Singh H, Lucien F P, Foster N R. Critical properties for binary mixtures of ethane containing low concentrations of n-alkane[J]. Journal of Chemical & Engineering Data, 2000, 45(1): 131-135. |
87 | Bezgomonova E I, Abdulagatov I M, Stepanov G V. Experimental study of the one-, two-, and three-phase isochoric heat capacities of n-hexane + water mixtures near the lower critical line (Ⅰ): Experimental results[J]. Journal of Molecular Liquids, 2012, 175: 121-134. |
88 | Yang Z Q, Valtz A, Coquelet C, et al. Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs[J]. International Journal of Refrigeration, 2022, 138:133-147. |
89 | Belyakov M Y, Kulikov V D, Muratov A R, et al. Thermodynamic properties of a model hydrocarbon ternary mixture in the vicinity of critical point: measurements and modeling with crossover equation of state[J]. Fluid Phase Equilibria, 2020, 518: 112630. |
90 | Byun H S, Choi M Y, Lim J S. High-pressure phase behavior and modeling of binary mixtures for alkyl acetate in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2006, 37(3): 323-332. |
91 | Gil L, Blanco S T, Rivas C, et al. Experimental determination of the critical loci for {n-C6H14 or CO2+ alkan-1-ol} mixtures. Evaluation of their critical and subcritical behavior using PC-SAFT EoS[J]. The Journal of Supercritical Fluids, 2012, 71: 26-44. |
92 | McLinden M O, Brown J S, Brignoli R, et al. Limited options for low-global-warming-potential refrigerants[J]. Nature Communications, 2017, 8(1): 1-9. |
93 | Yang Z, Feng B, Ma H Y, et al. Analysis of lower GWP and flammable alternative refrigerants[J]. International Journal of Refrigeration, 2021, 126: 12-22. |
[1] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[2] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[3] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[4] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[5] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[6] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[7] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
[8] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
[9] | 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144. |
[10] | 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500. |
[11] | 高欢, 丁国良, 周发贤, 庄大伟. R410A制冷剂在润滑油中的动态析出特性的研究[J]. 化工学报, 2022, 73(3): 1054-1062. |
[12] | 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
[13] | 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053. |
[14] | 王洁冰, 高金彤, 徐震原. 基于不同类型溶液蒸气压特性的太阳能界面蒸发实验研究[J]. 化工学报, 2022, 73(2): 663-671. |
[15] | 李怀旭, 孙晓岩, 陶少辉, 夏力, 项曙光. 基于分子热力学性质和密度峰聚类的脱硫汽油集总[J]. 化工学报, 2022, 73(12): 5449-5460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||