化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1044-1053.DOI: 10.11949/0438-1157.20211343
收稿日期:
2021-09-16
修回日期:
2021-11-02
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
彭昌军
作者简介:
李明宴(1996—),男,硕士研究生,基金资助:
Mingyan LI1(),Jinlong LI2,Changjun PENG1(),Honglai LIU1
Received:
2021-09-16
Revised:
2021-11-02
Online:
2022-03-15
Published:
2022-03-14
Contact:
Changjun PENG
摘要:
采用COSMO-SAC模型研究了不同离子液体存在下氨水溶液的汽液相平衡,探讨了离子液体的亲水性、酸碱性、阴阳离子种类以及功能基团修饰等对氨的相对挥发度的影响。研究发现,不同性质的离子液体均会影响氨水系统的汽液相平衡。一般地,如果水与离子液体相互作用能高于氨与水的相互作用能,离子液体将有利于氨的逸出。当阴离子亲水性和形成氢键的能力越强,或者水与阴离子相互作用能越强,或者氨与阳离子相互作用能越弱,则离子液体越能促进氨水分离。水/离子液体之间的相互作用能与氨/水之间的相互作用能差值越大,离子液体越能提高氨的相对挥发度。当水与离子液体相互作用能低于氨与水的相互作用能时,离子液体也能促进低浓度下的氨水分离。阴离子要比阳离子更能影响氨的相对挥发度,其中氯离子([Cl]-)、醋酸根离子([Ac]-)型离子液体对促进氨水分离的效果更佳。对于甲基咪唑类阳离子([C n mim]+,n=2、4、6、8),烷基链越长,越不利于氨的分离,但在[C2mim]+上嫁接胺基(—NH2)将会改善低浓度下氨水的分离效果。
中图分类号:
李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053.
Mingyan LI, Jinlong LI, Changjun PENG, Honglai LIU. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC[J]. CIESC Journal, 2022, 73(3): 1044-1053.
Ions | Meaning | Ammonia/(kJ·mol-1) | Water/(kJ·mol-1) |
---|---|---|---|
[Ac]- | acetate (醋酸根离子) | -40.81 | -58.40 |
[Cl]- | chloridion (氯离子) | -19.61 | -29.14 |
[NO3]- | nitrate (硝酸根离子) | -8.72 | -18.75 |
[BF4]- | tetrafluoroborate (四氟化硼离子) | -16.34 | -14.01 |
[NTf2]- | bis(trifluoromethylsulfonyl)imide(双三氟甲磺酰亚胺离子) | -14.11 | -12.06 |
[PF6]- | hexafluorophosphate (六氟化磷离子) | -17.97 | -11.40 |
[Ala]- | alaninate (丙氨酸离子) | -14.19 | -33.66 |
[Gly]- | glycinate (甘氨酸离子) | -13.47 | -34.00 |
[Glu]- | glutamate (谷氨酸离子) | -15.19 | -35.06 |
[Lys]- | lysinate (赖氨酸离子) | -12.27 | -29.06 |
[Pro]- | prolinate (脯氨酸离子) | -13.61 | -30.89 |
[HCO3]- | bicarbonate (碳酸氢根离子) | -13.89 | -28.75 |
[HSO4]- | hydrogen sulfate (硫酸氢根离子) | -15.04 | -18.52 |
[H2PO4]- | phosphate (磷酸根离子) | -17.34 | -26.57 |
[PHEN]- | phenol (苯酚离子) | -25.36 | -38.34 |
[TFA]- | trifluoroacetate (三氟乙酸根离子) | -14.51 | -26.00 |
[Im]+ | imidazolium (咪唑离子) | -51.20 | -26.96 |
[Choline]+ | 1-(2-hydroxyethyl)-N,N,N-trimethyl ammonium (胆碱离子) | -40.36 | -21.92 |
[P1111]+ | 1,1,1,1-methyl-teralkyphosphonium (季离子) | -16.51 | -7.76 |
[N1111]+ | 1,1,1,1-methyl-quaternary ammonium (季铵离子) | -12.84 | -6.31 |
[Piper]+ | piperidinium (哌啶离子) | -45.14 | -24.67 |
[Py]+ | pyridinium (吡啶离子) | -65.53 | -26.44 |
[C2mim]+ | 1-ethyl-3-methyl imidazolium (1-乙基-3-甲基咪唑离子) | -17.84 | -8.14 |
[C4mim]+ | 1-butyl-3-methyl imidazolium (1-丁基-3-甲基咪唑离子) | -19.48 | -9.00 |
[C6mim]+ | 1-hexyl-3-methyl imidazolium (1-己基-3-甲基咪唑离子) | -19.43 | -9.95 |
[C8mim]+ | 1-octyl-3-methyl imidazolium (1-辛基-3-甲基咪唑离子) | -19.78 | -10.65 |
[C2(OH)mim]+ | 1-hydroxyethyl-3-methyl imidazolium (1-羟乙基-3-甲基咪唑离子) | -41.97 | -23.03 |
[C2(NH2)mim]+ | 1-(2-aminoethyl)-3-methyl imidazolium (1-氨乙基-3-甲基咪唑离子) | -22.96 | -14.80 |
[C2(SH)mim]+ | 1-(2-mercaptoethyl)-3-methyl imidazolium (1-巯乙基-3-甲基咪唑离子) | -26.31 | -12.77 |
[C2(COOH)mim]+ | 1-(2-carboxylic acid ethyl)-3-methyl imidazolium (1-羧酸乙基-3-甲基咪唑离子) | -65.65 | -35.92 |
表1 不同离子与氨和水之间的相互作用能
Table 1 Interaction energies of ammonia-ILs and water-ILs
Ions | Meaning | Ammonia/(kJ·mol-1) | Water/(kJ·mol-1) |
---|---|---|---|
[Ac]- | acetate (醋酸根离子) | -40.81 | -58.40 |
[Cl]- | chloridion (氯离子) | -19.61 | -29.14 |
[NO3]- | nitrate (硝酸根离子) | -8.72 | -18.75 |
[BF4]- | tetrafluoroborate (四氟化硼离子) | -16.34 | -14.01 |
[NTf2]- | bis(trifluoromethylsulfonyl)imide(双三氟甲磺酰亚胺离子) | -14.11 | -12.06 |
[PF6]- | hexafluorophosphate (六氟化磷离子) | -17.97 | -11.40 |
[Ala]- | alaninate (丙氨酸离子) | -14.19 | -33.66 |
[Gly]- | glycinate (甘氨酸离子) | -13.47 | -34.00 |
[Glu]- | glutamate (谷氨酸离子) | -15.19 | -35.06 |
[Lys]- | lysinate (赖氨酸离子) | -12.27 | -29.06 |
[Pro]- | prolinate (脯氨酸离子) | -13.61 | -30.89 |
[HCO3]- | bicarbonate (碳酸氢根离子) | -13.89 | -28.75 |
[HSO4]- | hydrogen sulfate (硫酸氢根离子) | -15.04 | -18.52 |
[H2PO4]- | phosphate (磷酸根离子) | -17.34 | -26.57 |
[PHEN]- | phenol (苯酚离子) | -25.36 | -38.34 |
[TFA]- | trifluoroacetate (三氟乙酸根离子) | -14.51 | -26.00 |
[Im]+ | imidazolium (咪唑离子) | -51.20 | -26.96 |
[Choline]+ | 1-(2-hydroxyethyl)-N,N,N-trimethyl ammonium (胆碱离子) | -40.36 | -21.92 |
[P1111]+ | 1,1,1,1-methyl-teralkyphosphonium (季离子) | -16.51 | -7.76 |
[N1111]+ | 1,1,1,1-methyl-quaternary ammonium (季铵离子) | -12.84 | -6.31 |
[Piper]+ | piperidinium (哌啶离子) | -45.14 | -24.67 |
[Py]+ | pyridinium (吡啶离子) | -65.53 | -26.44 |
[C2mim]+ | 1-ethyl-3-methyl imidazolium (1-乙基-3-甲基咪唑离子) | -17.84 | -8.14 |
[C4mim]+ | 1-butyl-3-methyl imidazolium (1-丁基-3-甲基咪唑离子) | -19.48 | -9.00 |
[C6mim]+ | 1-hexyl-3-methyl imidazolium (1-己基-3-甲基咪唑离子) | -19.43 | -9.95 |
[C8mim]+ | 1-octyl-3-methyl imidazolium (1-辛基-3-甲基咪唑离子) | -19.78 | -10.65 |
[C2(OH)mim]+ | 1-hydroxyethyl-3-methyl imidazolium (1-羟乙基-3-甲基咪唑离子) | -41.97 | -23.03 |
[C2(NH2)mim]+ | 1-(2-aminoethyl)-3-methyl imidazolium (1-氨乙基-3-甲基咪唑离子) | -22.96 | -14.80 |
[C2(SH)mim]+ | 1-(2-mercaptoethyl)-3-methyl imidazolium (1-巯乙基-3-甲基咪唑离子) | -26.31 | -12.77 |
[C2(COOH)mim]+ | 1-(2-carboxylic acid ethyl)-3-methyl imidazolium (1-羧酸乙基-3-甲基咪唑离子) | -65.65 | -35.92 |
1 | 陈昕, 王如竹. 一种低温余热高效利用的氨水动力循环[J]. 化工学报, 2016, 67(9): 3536-3544. |
Chen X, Wang R Z. An efficient ammonia-water power cycle in low temperature waste heat application[J]. CIESC Journal, 2016, 67(9): 3536-3544. | |
2 | 孙淑娟, 杜垲. 氨精馏纯度对氨水吸收式制冷系统性能的影响分析[J]. 制冷技术, 2018, 38(2): 11-15. |
Sun S J, Du K. Analysis on effect of ammonia distillation concentration on performance of ammonia-water absorption refrigeration system[J]. Chinese Journal of Refrigeration Technology, 2018, 38(2): 11-15. | |
3 | 王彤彤, 孙嘉楠, 张涛, 等. 太阳能集热器驱动的吸收式制冷系统性能分析[J]. 山东大学学报(工学版), 2019, 49(5): 58-63, 71. |
Wang T T, Sun J N, Zhang T, et al. Performance analysis for an absorption refrigeration system driven by parabolic trough solar collector[J]. Journal of Shandong University (Engineering Science), 2019, 49(5): 58-63, 71. | |
4 | 陈光明, 石玉琦. 吸收式制冷(热泵)循环流程研究进展[J]. 制冷学报, 2017, 38(4): 1-22. |
Chen G M, Shi Y Q. State-of-the-art absorption refrigeration and heat pump cycles[J]. Journal of Refrigeration, 2017, 38(4): 1-22. | |
5 | Zare V, Mahmoudi S M S, Yari M, et al. Thermoeconomic analysis and optimization of ammonia-water power/cooling cogeneration cycle[J]. Energy, 2012, 47(1): 271-283. |
6 | 徐梦凯, 李舒宏, 金正浩.氨-水-溴化锂三元工质氨吸收式制冷性能[J]. 化工学报, 2021, 72: 127-133. |
Xu M K, Li S H, Jin Z H. Performance of ammonia-water-lithium bromide ternary working fluid absorption refrigeration[J]. CIESC Journal, 2021, 72: 127-133. | |
7 | 曹燕, 丁延, 郭义仓, 等. 溴化锂及离子液体水溶液密度、黏度和表面张力测定与计算[J]. 化工学报, 2021, 72(4): 1874-1884. |
Cao Y, Ding Y, Guo Y C, et al. Measurement and calculations of density, viscosity and surface tension for lithium bromide and ionic liquid aqueous solutions[J]. CIESC Journal, 2021, 72(4): 1874-1884. | |
8 | 陈尔健, 代彦军. 使用NH3-LiNO3工质对的增压型回热吸收循环性能分析[J]. 化工学报, 2021, 72: 445-452. |
Chen E J, Dai Y J. Performance analysis of absorption heat recovering cycle with high-pressure booster using NH3-LiNO3 as the working pair[J]. CIESC Journal, 2021, 72: 445-452. | |
9 | Davis R O E, Olmstead L B, Lundstrum F O. Vapor pressure of lithium nitrate: ammonia system[J]. Journal of the American Chemical Society, 1921, 43(7): 1575-1580. |
10 | Peters R, Greb O, Korinth C, et al. Vapor-liquid equilibria in the system NH3 + H2O + LiBr (1): Measurements at T = 303—423 K and p = 0.1—1.5 MPa[J]. Journal of Chemical & Engineering Data, 1995, 40(4): 769-774. |
11 | Libotean S, Salavera D, Valles M, et al. Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K[J]. Journal of Chemical & Engineering Data, 2007, 52(3): 1050-1055. |
12 | Wu Y Y, Chen Y, Wu T H. Experimental researches on characteristics of vapor-liquid equilibrium of NH3-H2O-LiBr system[J]. International Journal of Refrigeration, 2006, 29(2): 328-335. |
13 | Brass M, Pritzel T, Schulte E, et al. Measurements of vapor-liquid equilibria in the systems NH3-H2O-NaOH and NH3-H2O-KOH at temperatures of 303 and 318 K and pressures 0.1 MPa<p<1.3 MPa[J]. International Journal of Thermophysics, 2000, 21(4): 883-898. |
14 | Salavera D, Chaudhari S K, Esteve X, et al. Vapor-liquid equilibria of ammonia + water + potassium hydroxide and ammonia + water + sodium hydroxide solutions at temperatures from (293.15 to 353.15) K[J]. Journal of Chemical & Engineering Data, 2005, 50(2): 471-476. |
15 | Huang W J, Zheng D X, Xia C X, et al. Affinity regulation of the NH3 + H2O system by ionic liquids with molecular interaction analysis[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 16242-16250. |
16 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
17 | Yokozeki A, Shiflett M B. Ammonia solubilities in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2007, 46(5): 1605-1610. |
18 | Yokozeki A, Shiflett M B. Vapor-liquid equilibria of ammonia + ionic liquid mixtures[J]. Applied Energy, 2007, 84(12): 1258-1273. |
19 | Bedia J, Palomar J, Gonzalez-Miquel M, et al. Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis[J]. Separation and Purification Technology, 2012, 95: 188-195. |
20 | Li P F, Shang D W, Tu W H, et al. NH3 absorption performance and reversible absorption mechanisms of protic ionic liquids with six-membered N-heterocyclic cations[J]. Separation and Purification Technology, 2020, 248: 117087. |
21 | Shang D W, Zhang X P, Zeng S J, et al. Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption[J]. Green Chemistry, 2017, 19(4): 937-945. |
22 | Shi W, Maginn E J. Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf 2N])[J]. AIChE Journal, 2009, 55(9): 2414-2421. |
23 | Larrechi M S, Cera-Manjarres A, Coronas A. Ranking the solubility of ammonia in ionic liquids using near infrared spectroscopy and multivariate curve resolution[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 215: 88-96. |
24 | Li Z J, Zhang X P, Dong H F, et al. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J]. RSC Advances, 2015, 5(99): 81362-81370. |
25 | Shang D W, Bai L, Zeng S J, et al. Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(5): 1228-1236. |
26 | Zeng S J, Liu L, Shang D W, et al. Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid-base and cooperative hydrogen bond interactions[J]. Green Chemistry, 2018, 20(9): 2075-2083. |
27 | Yang B B, Shang D W, Tu W H, et al. Studies on the physical properties variations of protic ionic liquid during NH3 absorption[J]. Journal of Molecular Liquids, 2019, 296: 111791. |
28 | Wu W, You T, Li X T. Performance comparisons of NH3/ionic liquid absorption-compression heat pump for increasing the utilization of geothermal energy[J]. International Journal of Refrigeration, 2019, 104: 19-33. |
29 | Moreno D, Ferro V R, de Riva J, et al. Absorption refrigeration cycles based on ionic liquids: refrigerant/absorbent selection by thermodynamic and process analysis[J]. Applied Energy, 2018, 213: 179-194. |
30 | Zheng D X, Dong L, Huang W J, et al. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 47-68. |
31 | Wang M, Becker T M, Infante Ferreira C A. Assessment of vapor-liquid equilibrium models for ionic liquid based working pairs in absorption cycles[J]. International Journal of Refrigeration, 2018, 87: 10-25. |
32 | Wang M, Becker T M, Schouten B A, et al. Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels[J]. Energy Conversion and Management, 2018, 174: 824-843. |
33 | Wu W, Wang B L, You T, et al. Compression-assisted absorption cycles using ammonia and various ionic liquids for cleaner heating[J]. Journal of Cleaner Production, 2018, 195: 890-907. |
34 | 孙艳军, 邸高雷, 夏娟, 等. 以离子液体为吸收剂的吸收式制冷循环热力学分析[J]. 化工学报, 2018, 69: 38-44. |
Sun Y J, Di G L, Xia J, et al. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents[J]. CIESC Journal, 2018, 69: 38-44. | |
35 | Huang W J, Sun G M, Zheng D X, et al. Vapor-liquid equilibrium measurements of NH3 + H2O + ionic liquid ([Dmim]Cl, [Dmim]BF4, and [Dmim]DMP) systems[J]. Journal of Chemical & Engineering Data, 2013, 58(5): 1354-1360. |
36 | Swarnkar S K, Srinivasa M S, Gardas R L, et al. Performance of a vapour absorption refrigeration system operating with ionic liquid-ammonia combination with water as cosolvent[J]. Applied Thermal Engineering, 2014, 72(2): 250-257. |
37 | 黄维佳, 郑丹星, 夏昌兴. NH3-H2O-P(CH3)4Cl体系汽液相平衡、密度和黏度的测定[J]. 工程热物理学报, 2016, 37(10): 2052-2056. |
Huang W J, Zheng D X, Xia C X. Vapor-liquid equilibrium, density, and viscosity measurement of NH3-H2O-P(CH3)4Cl[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2052-2056. | |
38 | Lin S T, Sandler S I. A priori phase equilibrium prediction from a segment contribution solvation model[J]. Industrial & Engineering Chemistry Research, 2002, 41(5): 899-913. |
39 | Hsieh C M, Sandler S I, Lin S T. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1): 90-97. |
40 | Clifford I I, Hunter E. The system ammonia-water at temperatures up to 150℃ and at pressures up to twenty atmospheres[J]. The Journal of Physical Chemistry, 1933, 37(1): 101-118. |
41 | Cao Y Y, Chen Y, Sun X F, et al. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity[J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12252. |
42 | 李婷婷, 杨青, 彭昌军, 等. 基于COSMO-RS模型研究基团修饰[EMIM][OAC]的离子液体对乙腈-水汽液平衡的影响[J]. 化工学报, 2016, 67(2): 425-434. |
Li T T, Yang Q, Peng C J, et al. Functionalized ionic liquids based on [EMIM][OAC] for vapor-liquid phase equilibrium of acetonitrile and water by COSMO-RS method[J]. CIESC Journal, 2016, 67(2): 425-434. | |
43 | Méndez-Morales T, Carrete J, Cabeza Ó, et al. Molecular dynamics simulation of the structure and dynamics of water-1-alkyl-3-methylimidazolium ionic liquid mixtures[J]. The Journal of Physical Chemistry B, 2011, 115(21): 6995-7008. |
44 | Brehm M, Weber H, Pensado A S, et al. Proton transfer and polarity changes in ionic liquid-water mixtures: a perspective on hydrogen bonds from ab initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate-water mixtures (Part 1)[J]. Physical Chemistry Chemical Physics, 2012, 14(15): 5030. |
45 | Freire M G, Neves C M, Carvalho P J, et al. Mutual solubilities of water and hydrophobic ionic liquids[J]. The Journal of Physical Chemistry B, 2007, 111(45): 13082-13089. |
46 | Palomar J, Gonzalez-Miquel M, Bedia J, et al. Task-specific ionic liquids for efficient ammonia absorption[J]. Separation and Purification Technology, 2011, 82: 43-52. |
47 | Tian J, Liu B Y. Ammonia capture with ionic liquid systems: a review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(5): 767-809. |
48 | Cao Y Y, Sun X F, Chen Y, et al. Water sorption in amino acid ionic liquids: kinetic, mechanism, and correlations between hygroscopicity and solvatochromic parameters[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 138-148. |
49 | Sun G M, Huang W J, Zheng D X, et al. Vapor-liquid equilibrium prediction of ammonia-ionic liquid working pairs of absorption cycle using UNIFAC model[J]. Chinese Journal of Chemical Engineering, 2014, 22(1): 72-78. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[5] | 吴迪, 胡斌, 王如竹, 梁俊宇. 水蒸气准饱和压缩高温热泵循环性能分析[J]. 化工学报, 2023, 74(S1): 45-52. |
[6] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[7] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[8] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[9] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[10] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[11] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[12] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[13] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[14] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[15] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||