化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1102-1112.DOI: 10.11949/0438-1157.20221442
收稿日期:
2022-11-07
修回日期:
2023-02-20
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
闫新龙
作者简介:
闫新龙(1983—),男,博士,副教授,yanxl@cumt.edu.cn
基金资助:
Xinlong YAN1(), Zhigang HUANG1, Qingxun HU2, Xin ZHANG1, Xiaoyan HU1
Received:
2022-11-07
Revised:
2023-02-20
Online:
2023-03-05
Published:
2023-04-19
Contact:
Xinlong YAN
摘要:
以MOF-74为模板制备了Cu/Co双金属掺杂多孔炭催化剂。用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2物理吸附/脱附等对催化剂结构进行了表征。研究并阐释了Cu/Co双金属掺杂多孔炭催化剂活化过一硫酸盐(PMS)氧化降解4-硝基酚性能及机理。结果表明,在投加100 mg·L-1催化剂、2 g·L-1 PMS、初始pH为6时,15 min内硝基酚(60 mg·L-1)去除率达98%以上。降解反应符合伪一级反应动力学模型。催化剂循环反应4次,降解率均高于90%。猝灭实验及电子顺磁共振分析表明自由基(·SO
中图分类号:
闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112.
Xinlong YAN, Zhigang HUANG, Qingxun HU, Xin ZHANG, Xiaoyan HU. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon[J]. CIESC Journal, 2023, 74(3): 1102-1112.
图1 催化剂中不同Cu/Co摩尔比对4-NP降解性能的影响(反应条件:[4-NP]=60 mg·L-1,[PMS]=2 g·L-1,[催化剂]=100 mg·L-1,pH=6, T=30℃)
Fig.1 Effects of Cu/Co ratio in catalysts on 4-NP degradation performance
图8 无机阴离子对4-NP降解性能的影响(反应条件:[4-NP] =60 mg·L-1,[PMS] =2 g·L-1,[催化剂]=100 mg·L-1,pH=6, T=30℃)
Fig.8 Degradation performance for 4-NP in the presence of different inorganic anions
1 | Raghunath D, Venkata S S, Hugues K P, et al. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes[J]. Applied Catalysis B: Environmental, 2019, 244: 546-558. |
2 | Zhu M, Zhang L, Liu S, et al. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode[J]. Chinese Chemical Letters, 2020, 31(7): 1961-1965. |
3 | Duan P, Liu X, Liu B, et al. Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism[J]. Applied Catalysis B: Environmental, 2021, 298: 120532. |
4 | 韩雪, 高生旺, 王国英, 等. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
Han X, Gao S W, Wang G Y, et al. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping[J]. CIESC Journal, 2022, 73(4): 1743-1753. | |
5 | Giannakis S, Andrew Lin K Y, Ghanbari F, et al. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. |
6 | 黄仕元, 邓简, 袁瀚钦, 等. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056. |
Huang S Y, Deng J, Yuan H Q, et al. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet[J]. CIESC Journal, 2022, 73(7): 3045-3056. | |
7 | Peng L, Shang Y, Gao B, et al. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride[J]. Applied Catalysis B: Environmental, 2021, 282: 119484. |
8 | Li Y, Yan X, Hu X, et al. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water[J]. Chemical Engineering Journal, 2019, 375: 122003. |
9 | Do H H, Quyet V L, Mahider A T, et al. Metal-organic framework-derived MoS x composites as efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 852: 156952. |
10 | Zhang X, Yan X, Hu X, et al. Efficient removal of organic pollutants by a Co/N/S-doped yolk-shell carbon catalyst via peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 421: 126726. |
11 | Li H, Yao Y, Zhang J, et al. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: kinetics, mechanisms, and degradation products[J]. Chemical Engineering Journal, 2020, 397: 125401. |
12 | Zhang X H, Chuah C Y, Dong P P, et al. Hierarchically porous Co-MOF-74 hollow nanorods for enhanced dynamic CO2 separation[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43316-43322. |
13 | Yao Y J, Xu C, Qin J C, et al. Synthesis of magnetic cobalt nanoparticles anchored on graphene nanosheets and catalytic decomposition of orange Ⅱ[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17341-17350. |
14 | Guo W W, Bi J H, Zhu Q G, et al. Highly selective CO2 electroreduction to CO on Cu-Co bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12561-12567. |
15 | Liu Y, Chen X Y, Yang Y L, et al. Activation of persulfate with metal-organic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-chloroaniline removal[J]. Chemical Engineering Journal, 2019, 358: 408-418. |
16 | Wang K F, Chen Y J, Tian R, et al. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11333-11342. |
17 | Wang X, Song K, Yang R, et al. Facile construction of sandwich-like Co3O4/CNTs complex for high-performance asymmetric supercapacitors[J]. ChemistrySelect, 2019, 4(13): 3878-3883. |
18 | Chen C, Liu L, Li Y, et al. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate[J]. Chemical Engineering Journal, 2020, 384: 123257. |
19 | Yin J, Li Y X, Lv F, et al. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries[J]. ACS Nano, 2017, 11(2): 2275-2283. |
20 | Lian H Y, Hu M, Liu C H, et al. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery[J]. Chemical Communications, 2012, 48(42): 5151-5153. |
21 | Li X H, Guo W L, Liu Z H, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369: 130-136. |
22 | Chen C, Liu L, Li W, et al. Reutilization of waste self-heating pad by loading cobalt: a magnetic and green peroxymonosulfate activator for naphthalene degradation[J]. Journal of Hazardous Materials, 2022, 439: 129572. |
23 | Li W, Li Y X, Zhang D Y, et al. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 381: 121209. |
24 | Zhang T, Zhu H B, Croué J P, et al. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47(6): 2784-2791. |
25 | Bennedsen L R, Muff J, Søgaard E G. Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092-1097. |
26 | Li H X, Wan J Q, Ma Y W, et al. Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron[J]. RSC Advances, 2015, 5(121): 99935-99943. |
27 | Xu X R, Li S X, Li X Y, et al. Degradation of n-butyl benzyl phthalate using TiO2/UV[J]. Journal of Hazardous Materials, 2009, 164(2/3): 527-532. |
28 | Li C X, Chen C B, Wang Y J, et al. Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation[J]. Chemical Engineering Journal, 2019, 362: 570-575. |
29 | Lee H J, Kim H E, Kim M S, et al. Inactivation of bacterial planktonic cells and biofilms by Cu(Ⅱ)-activated peroxymonosulfate in the presence of chloride ion[J]. Chemical Engineering Journal, 2020, 380: 122468. |
30 | Li X M, Yan X L, H X Y et al. Enhanced adsorption and catalytic peroxymonosulfate activation by metal-free N-doped carbon hollow spheres for water depollution[J]. Journal of Colloid and Interface Science, 2021, 591: 184-192. |
31 | Li W, Li S, Tang Y, et al. Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation[J]. Journal of Hazardous Materials, 2020, 389: 121856. |
32 | Zhou P, Zhang J, Zhang Y L, et al. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper[J]. Journal of Hazardous Materials, 2018, 344: 1209-1219. |
33 | Wang Y T, He L Y, Li Y S, et al. Ag NPs supported on the magnetic Al-MOF/PDA as nanocatalyst for the removal of organic pollutants in water[J]. Journal of Alloys and Compounds, 2020, 828: 154340. |
34 | Liang S, Niu H Y, Guo H, et al. Incorporating Fe3C into B, N co-doped CNTs: non-radical-dominated peroxymonosulfate catalytic activation mechanism[J]. Chemical Engineering Journal, 2021, 405: 126686. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||