化工学报 ›› 2023, Vol. 74 ›› Issue (7): 3028-3037.DOI: 10.11949/0438-1157.20230339
张孟斌1(), 李锐1, 张嘉杰1(), 马素霞1, 张建胜2
收稿日期:
2023-04-06
修回日期:
2023-06-09
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
张嘉杰
作者简介:
张孟斌(1998—),男,硕士研究生,18406599625@163.com
基金资助:
Mengbin ZHANG1(), Rui LI1, Jiajie ZHANG1(), Suxia MA1, Jiansheng ZHANG2
Received:
2023-04-06
Revised:
2023-06-09
Online:
2023-07-05
Published:
2023-08-31
Contact:
Jiajie ZHANG
摘要:
针对工业锅炉灰渣沉积监测的需求,基于共面电容原理对煤炭灰渣在高温下的电容特性进行测试,通过XRD与SEM分析淬冷灰渣的物相结构与微观形貌,并结合宽频介电谱仪研究温度、频率、组分对灰渣介电性能的影响规律。结果表明,随着温度的升高(>700℃),灰渣物相中形成镁铁尖晶石且晶粒尺寸逐渐增大,灰渣复阻抗谱符合IBLC电介质模型,导致灰渣介电常数和测试电容值逐渐增大,基准渣在1200℃时的电容值约为700℃的282.0倍;Si/Al的变化对灰渣的介电性能影响不大,随着Fe2O3含量的增加或CaO含量的减小,灰渣中的晶粒尺寸逐渐增大,导致介电常数增加,因此测试电容值增大。
中图分类号:
张孟斌, 李锐, 张嘉杰, 马素霞, 张建胜. 基于共面电容原理的煤炭灰渣介电特性实验研究[J]. 化工学报, 2023, 74(7): 3028-3037.
Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle[J]. CIESC Journal, 2023, 74(7): 3028-3037.
灰样 | SiO2/% (质量) | Al2O3/% (质量) | CaO/% (质量) | Fe2O3/% (质量) | MgO/% (质量) |
---|---|---|---|---|---|
#1 | 38.56 | 15.03 | 20.08 | 19.29 | 7.04 |
#2 | 17.86 | 35.73 | 20.08 | 19.29 | 7.04 |
#3 | 43.85 | 9.74 | 20.08 | 19.29 | 7.04 |
#4 | 43.00 | 16.76 | 22.39 | 10.00 | 7.85 |
#5 | 33.43 | 13.04 | 17.42 | 30.00 | 6.11 |
#6 | 43.42 | 16.93 | 10.00 | 21.72 | 7.93 |
#7 | 33.77 | 13.16 | 30.00 | 16.90 | 6.17 |
表1 灰渣样品组分
Table 1 Components of ash sample
灰样 | SiO2/% (质量) | Al2O3/% (质量) | CaO/% (质量) | Fe2O3/% (质量) | MgO/% (质量) |
---|---|---|---|---|---|
#1 | 38.56 | 15.03 | 20.08 | 19.29 | 7.04 |
#2 | 17.86 | 35.73 | 20.08 | 19.29 | 7.04 |
#3 | 43.85 | 9.74 | 20.08 | 19.29 | 7.04 |
#4 | 43.00 | 16.76 | 22.39 | 10.00 | 7.85 |
#5 | 33.43 | 13.04 | 17.42 | 30.00 | 6.11 |
#6 | 43.42 | 16.93 | 10.00 | 21.72 | 7.93 |
#7 | 33.77 | 13.16 | 30.00 | 16.90 | 6.17 |
图9 不同Si/Al淬冷灰渣的XRD谱图1—石英(SiO2); 2—赤铁矿(Fe2O3); 3—方镁石(MgO); 4—镁铁尖晶石(MgFe2O4); 5—镁硅钙石[Ca3Mg(SiO4)2]
Fig.9 XRD patterns of quenched ash with different Si/Al
图12 不同Fe2O3比例淬冷灰渣的XRD谱图1—石英(SiO2); 2—赤铁矿(Fe2O3); 3—方镁石(MgO); 4—镁铁尖晶石(MgFe2O4); 5—镁硅钙石[Ca3Mg(SiO4)2]
Fig.12 XRD patterns of ash with different Fe2O3 ratios
图15 不同CaO比例淬冷灰渣的XRD谱图1—石英(SiO2); 2—赤铁矿(Fe2O3); 3—方镁石(MgO); 4—镁铁尖晶石(MgFe2O4); 5—镁硅钙石[Ca3Mg(SiO4)2]; 6—透辉石(CaMgSi2O6); 7—钙铝黄长石(Ca2Al2SiO7)
Fig.15 XRD patterns of quenched ash with different CaO ratios
1 | 井云环, 杨磊, 刘洪刚, 等. 德士古全废锅流程辐射废锅结渣原因及改进[J]. 洁净煤技术, 2013, 19(2): 106-109. |
Jing Y H, Yang L, Liu H G, et al. Preventive measures against coking on radiation heat exchanger of Texaco gasifier[J]. Clean Coal Technology, 2013, 19(2): 106-109. | |
2 | Chambers A K, Wynnyckyj J R, Rhodes E. A furnace wall ash monitoring system for coal fired boilers[J]. Journal of Engineering for Power, 1981, 103(3): 532-538. |
3 | Hill D, Kaine P, Dairyland P. Going for a clean sweep[J]. Power Engineering International, 1998, 6(3): 43-46. |
4 | 周明, 徐鸿飞, 孙忠华. 塑管成型超声波在线检测系统中的数据处理[J]. 无损检测, 2009, 31(8): 647-649. |
Zhou M, Xu H F, Sun Z H. Data processing of online detection system for extrusion line of plastic pipes[J]. Nondestructive Testing Technology, 2009, 31(8): 647-649. | |
5 | Wilde J, Lai Y Q. Design optimization of an eddy current sensor using the finite-elements method[J]. Microelectronics Reliability, 2003, 43(3): 345-349. |
6 | 曹英荣. 虚拟式电容测厚系统的研制[D]. 武汉: 华中科技大学, 2006. |
Cao Y R. Research and development of the system of thickness measurement by virtual capacitance sensor [D]. Wuhan: Huazhong University of Science and Technology, 2006. | |
7 | 张嘉杰, 方英蔓, 张建胜, 等. 基于电容原理差动式测量的积灰结渣在线监测装置及方法: 110631465B[P]. 2021-04-16. |
Zhang J J, Fang Y M, Zhang J S, et al. Ash deposition and slagging online monitoring device and method based on capacitance principle differential measurement: 110631465B[P]. 2021-04-16. | |
8 | 张嘉杰, 方英蔓, 张建胜, 等. 一种基于电容原理的管式换热器灰污在线监测装置及方法: 112066864B[P]. 2022-05-17. |
Zhang J J, Fang Y M, Zhang J S, et al. Tubular heat exchanger ash pollution on-line monitoring device and method based on capacitance principle: 112066864B[P]. 2022-05-17. | |
9 | 彭敬其. 基于共面电容原理的煤气化废锅灰污沉积监测技术研究[D]. 太原: 太原理工大学, 2021. |
Peng J Q. Research on monitoring technology of coal gasification waste boiler ash deposition based on coplanar capacitance principle[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
10 | Peng J Q, Zhang J J, Zhang J S. Numerical simulation research on the ash pollution measurement sensor based on coplanar capacitance principle[C]// 2020 International Conference on Optoelectronic Materials and Devices. Guangzhou, 2020. |
11 | 李润, 周敏. 不同化学助剂对炼焦煤微波脱硫的影响[J]. 中国科技论文, 2021, 16(4): 365-369. |
Li R, Zhou M. Effect of different chemical desulfurizers on microwave desulfurization of coking coal[J]. China Sciencepaper, 2021, 16(4): 365-369. | |
12 | 王岩, 杨承伟, 袁东营, 等. 煤岩学在炼焦配煤中的应用进展及优化配煤技术[J]. 过程工程学报, 2023, 23(1): 25-37. |
Wang Y, Yang C W, Yuan D Y, et al. Application progress of coal petrology in coking coal blending and coal blending optimization technology[J]. The Chinese Journal of Process Engineering, 2023, 23(1): 25-37. | |
13 | Zheng X Z, Wang B Y, Guo J, et al. Factors influencing dielectric properties of coal of different ranks[J]. Fuel, 2019, 258: 116181. |
14 | Zhu H Q, Wang H R, Wang W, et al. Study on the change of dielectric properties and chemical-mechanism during coal low-temperature oxidation[J]. Scientific Reports, 2020, 10: 4643. |
15 | Marland S, Merchant A, Rowson N. Dielectric properties of coal[J]. Fuel, 2001, 80(13): 1839-1849. |
16 | Liu H, Wang W J. Notice of retraction: measurement model of total moisture in coal based on permittivity[C]//2010 International Conference on Computer Application and System Modeling (ICCASM 2010). Taiyuan, China: IEEE, 2010: V10-398. |
17 | 徐樑. 煤焦微波介电性能的研究[D]. 太原: 太原理工大学, 2015. |
Xu L. Research on microwave dielectric properties of coal chars[D]. Taiyuan: Taiyuan University of Technology, 2015. | |
18 | Xu L, Liu H Y, Jin Y, et al. Structural order and dielectric properties of coal chars[J]. Fuel, 2014, 137: 164-171. |
19 | Giuntini J C, Zanchetta J V, Diaby S. Characterization of coals by the study of complex permittivity[J]. Fuel, 1987, 66(2): 179-184. |
20 | Brach I, Giuntini J C, Zanchetta J V. Real part of the permittivity of coals and their rank[J]. Fuel, 1994, 73(5): 738-741. |
21 | 王晶晶, 刘海玉, 徐樑, 等. 生物质和煤炭化过程中的介电性能研究[J]. 科学技术与工程, 2016, 16(14): 181-185. |
Wang J J, Liu H Y, Xu L, et al. Research on dielectric property of biomass and coal during carbonization[J]. Science Technology and Engineering, 2016, 16(14): 181-185. | |
22 | 李惠茹. 粒径及碱金属氧化物对飞灰介电性质影响的研究[D]. 太原: 太原理工大学, 2015. |
Li H R. Study on the influence of particle sizes and alkali metal oxides on dielectric property of fly ash[D]. Taiyuan: Taiyuan University of Technology, 2015. | |
23 | 景博. 飞灰中金属氧化物对微波衰减影响的机理研究[D]. 太原: 太原理工大学, 2014. |
Jing B. Study of influence of metal oxides in flying ash on its microwave attenuation[D]. Taiyuan: Taiyuan University of Technology, 2014. | |
24 | 倪建军. 气流床气化炉及其辐射废锅内的多相流动、传热与熔渣行为研究[D]. 上海:华东理工大学,2011. |
Ni J J. Investigation of multiphase flow, heat transfer and the behaviors of molten slag in entrained-flow gasifier and its radiant syngas cooler[D]. Shanghai: East China University of Science and Technology, 2011. | |
25 | 张帅. 准东煤灰烧结特性实验研究[D]. 哈尔滨:哈尔滨工业大学,2017. |
Zhang S. Experimental study on characteristics of Zhundong coal ash sintering[D]. Harbin: Harbin Institute of Technology, 2017. | |
26 | 王东旭. 碱土金属氧化物对准东煤灰熔融特性的影响研究[D]. 北京: 华北电力大学, 2018. |
Wang D X. Effect of alkaline earth metal oxides on the ash fusibility of Zhundong coal[D]. Beijing: North China Electric Power University, 2018. | |
27 | Murugesan C, Okrasa L, Chandrasekaran G. Structural, AC conductivity, impedance and dielectric study of nanocrystalline MFe2O4 (M=Mg, Co or Cu) spinel ferrites[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(17): 13168-13175. |
28 | de Almeida-Didry S, Autret C, Lucas A, et al. Leading role of grain boundaries in colossal permittivity of doped and undoped CCTO[J]. Journal of the European Ceramic Society, 2014, 34(15): 3649-3654. |
29 | Buzko V, Ivanin S, Goryachko A, et al. Magnesium spinel ferrites development for FDM 3D-printing material for microwave absorption[J]. Processes, 2022, 11(1): 60. |
30 | Boonlakhorn J, Prachamon J, Manyam J, et al. Colossal dielectric permittivity, reduced loss tangent and the microstructure of Ca1– x Cd x Cu3Ti4O12–2 y F2 y ceramics[J]. RSC Advances, 2021, 11(27): 16396-16403. |
[1] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[2] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[3] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[4] | 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
[5] | 王冠宇, 朱玲君, 周劲松, 王树荣. 基于组分协同效应的造纸厂固体废弃物热解特性研究[J]. 化工学报, 2022, 73(1): 393-401. |
[6] | 柯蓝婷, 王远鹏, 郑艳梅, 李清彪. 生物甲烷系统的组分分析与综合评价[J]. 化工学报, 2021, 72(7): 3801-3813. |
[7] | 王湘阳, 年永乐, 刘娜, 程文龙. 考虑C-SiO2反应的新型硅基材料烧蚀分析模型[J]. 化工学报, 2021, 72(6): 3270-3277. |
[8] | 沈中杰,郭晓镭,梁钦锋,刘海峰. 基于晶体生长及形貌的煤灰渣黏温模型[J]. 化工学报, 2021, 72(10): 5040-5052. |
[9] | 姜岩, 张哲. 不同亲水特性VOCs在生物滴滤工艺中的作用规律[J]. 化工学报, 2020, 71(7): 2973-2982. |
[10] | 杨辉, 代文豪, 陆荣秀, 朱建勇. 基于分离系数校正的稀土萃取流程模拟[J]. 化工学报, 2020, 71(7): 3180-3190. |
[11] | 陈超男, 罗向龙, 杨智, 黄仁龙, 卢沛, 陈健勇, 陈颖. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
[12] | 孙梦圆, 张守玉, 王才威, 胡南, 宋晓冰, 刘宏宇, 李潇峰. 棉秆水热及水热氧化过程水相产物分析研究[J]. 化工学报, 2020, 71(5): 2382-2388. |
[13] | 臧立静, 黄克谨, 苑杨, 钱行, 张亮, 王韶峰, 陈海胜. 轻组分绝对占优的蒸汽再压缩隔离壁蒸馏塔的最优拓扑结构[J]. 化工学报, 2020, 71(4): 1696-1711. |
[14] | 毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报, 2020, 71(2): 811-820. |
[15] | 蒋好,朱有健,刘恒,邵敬爱,成伟,杨鹏,吴贵豪,杨海平,陈汉平. 秸秆烘焙过程氯、硫释放及AAEMs迁徙转化特性研究[J]. 化工学报, 2020, 71(12): 5785-5792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||