化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5040-5052.DOI: 10.11949/0438-1157.20210462
收稿日期:
2021-04-06
修回日期:
2021-07-03
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
刘海峰
作者简介:
沈中杰(1989—),男,博士,特聘副研究员,基金资助:
Zhongjie SHEN(),Xiaolei GUO,Qinfeng LIANG,Haifeng LIU()
Received:
2021-04-06
Revised:
2021-07-03
Online:
2021-10-05
Published:
2021-10-05
Contact:
Haifeng LIU
摘要:
采用高温热台显微镜研究了非牛顿煤灰渣结晶过程的晶体生长规律及形貌特征,获得不同化学组成煤渣晶体的种类转变和长宽比变化等参数。基于实验获得的晶体生长规律,耦合晶体形貌、长宽比及熔渣固相随温度的变化关系式,修正悬浮液的黏度模型,建立了适用于非牛顿熔渣的黏温预测模型,并与实测黏温曲线对比和验证。该模型考虑了主要析出以单斜晶系或三斜晶系特征的长石类、黄长石、钙长石和镁硅钙石等单相和多相晶体形貌特征,并结合煤渣固相分数(范围0≤?≤0.8)和长宽比(1.0~16.0)等参数修正。结果发现,模型对于煤渣酸碱比范围为0.5~3.0,煤渣硅铝含量总和35%~70%(质量)范围,CaO含量低于30%(质量)、MgO含量为0~10%(质量)以及Fe2O3含量范围低于16%(质量)的煤渣黏度预测适用性较好。
中图分类号:
沈中杰,郭晓镭,梁钦锋,刘海峰. 基于晶体生长及形貌的煤灰渣黏温模型[J]. 化工学报, 2021, 72(10): 5040-5052.
Zhongjie SHEN,Xiaolei GUO,Qinfeng LIANG,Haifeng LIU. Development of coal ash/slag viscosity-temperature model based on crystal growth and morphologies[J]. CIESC Journal, 2021, 72(10): 5040-5052.
模型 | 颗粒形貌 | 体积分数? | 特征 |
---|---|---|---|
Einstein[ | 球形颗粒 | ? ≤0.1 | 适用于低浓度悬浮液 |
Einstein & Roscoe[ | 悬浮球体 | 0≤? ≤0.5 | 适用于粒径范围宽的悬浮液 |
Batchelor[ | 刚性球体 | 0≤? ≤0.5 | 适用于低固相浓度悬浮液 |
Maron & Pierce[ | 球形颗粒 | 0≤? ≤0.6 | 适用于分散相悬浮液 |
Krieger & Dougherty[ | 刚性球体 | 0≤? ≤0.6 | 考虑聚合作用,单一颗粒 |
Chong et al.[ | 球形颗粒 | 0≤? ≤0.5 | 具备表征球形颗粒尺寸分布常数 |
Moitra & Gonnermann[ | 球形、圆柱形 | 0≤? ≤0.6 | 考虑多种形状颗粒和不同颗粒体积比 |
Zhou et al.[ | 球形、立方、针状 | 0≤? ≤0.5 | 考虑多种形状 |
表1 传统悬浮液模型的适用条件及范围
Table 1 Applicable condition and scope of traditional suspension model
模型 | 颗粒形貌 | 体积分数? | 特征 |
---|---|---|---|
Einstein[ | 球形颗粒 | ? ≤0.1 | 适用于低浓度悬浮液 |
Einstein & Roscoe[ | 悬浮球体 | 0≤? ≤0.5 | 适用于粒径范围宽的悬浮液 |
Batchelor[ | 刚性球体 | 0≤? ≤0.5 | 适用于低固相浓度悬浮液 |
Maron & Pierce[ | 球形颗粒 | 0≤? ≤0.6 | 适用于分散相悬浮液 |
Krieger & Dougherty[ | 刚性球体 | 0≤? ≤0.6 | 考虑聚合作用,单一颗粒 |
Chong et al.[ | 球形颗粒 | 0≤? ≤0.5 | 具备表征球形颗粒尺寸分布常数 |
Moitra & Gonnermann[ | 球形、圆柱形 | 0≤? ≤0.6 | 考虑多种形状颗粒和不同颗粒体积比 |
Zhou et al.[ | 球形、立方、针状 | 0≤? ≤0.5 | 考虑多种形状 |
组成 | 煤灰/%(质量) | ||||||
---|---|---|---|---|---|---|---|
雨田 | 转龙湾 | 红沙泉 | 沙尔湖 | 神府 | 神火 | 将军庙 | |
SiO2 | 47.03 | 40.73 | 40.07 | 35.44 | 39.74 | 24.25 | 26.67 |
Al2O3 | 23.66 | 19.94 | 16.86 | 18.46 | 12.98 | 11.01 | 8.76 |
CaO | 12.22 | 11.82 | 8.96 | 25.43 | 28.44 | 27.95 | 16.04 |
Fe2O3 | 9.26 | 8.42 | 14.03 | 6.22 | 13.21 | 6.07 | 15.70 |
MgO | 0.74 | 2.32 | 5.59 | 4.87 | 0.93 | 9.03 | 9.60 |
SO3 | 4.24 | 12.18 | 7.53 | 3.08 | 0.72 | 17.76 | 14.51 |
Na2O | 1.20 | 3.26 | 5.40 | 4.92 | 2.12 | 2.53 | 7.70 |
K2O | 1.01 | 0.54 | 0.62 | 0.75 | 1.12 | 0.77 | 0.52 |
TiO2 | 0.63 | 0.79 | 0.95 | 0.83 | 0.74 | 0.63 | 0.49 |
SiO2+Al2O3 | 70.69 | 60.66 | 56.92 | 53.90 | 52.72 | 35.26 | 35.43 |
A/B① | 2.92 | 2.33 | 1.67 | 1.30 | 1.17 | 0.77 | 0.72 |
表2 实验所用煤灰的化学组成
Table 2 Chemical compositions of coal ashes used in this study
组成 | 煤灰/%(质量) | ||||||
---|---|---|---|---|---|---|---|
雨田 | 转龙湾 | 红沙泉 | 沙尔湖 | 神府 | 神火 | 将军庙 | |
SiO2 | 47.03 | 40.73 | 40.07 | 35.44 | 39.74 | 24.25 | 26.67 |
Al2O3 | 23.66 | 19.94 | 16.86 | 18.46 | 12.98 | 11.01 | 8.76 |
CaO | 12.22 | 11.82 | 8.96 | 25.43 | 28.44 | 27.95 | 16.04 |
Fe2O3 | 9.26 | 8.42 | 14.03 | 6.22 | 13.21 | 6.07 | 15.70 |
MgO | 0.74 | 2.32 | 5.59 | 4.87 | 0.93 | 9.03 | 9.60 |
SO3 | 4.24 | 12.18 | 7.53 | 3.08 | 0.72 | 17.76 | 14.51 |
Na2O | 1.20 | 3.26 | 5.40 | 4.92 | 2.12 | 2.53 | 7.70 |
K2O | 1.01 | 0.54 | 0.62 | 0.75 | 1.12 | 0.77 | 0.52 |
TiO2 | 0.63 | 0.79 | 0.95 | 0.83 | 0.74 | 0.63 | 0.49 |
SiO2+Al2O3 | 70.69 | 60.66 | 56.92 | 53.90 | 52.72 | 35.26 | 35.43 |
A/B① | 2.92 | 2.33 | 1.67 | 1.30 | 1.17 | 0.77 | 0.72 |
煤灰 | DT/℃ | ST/℃ | HT/℃ | FT/℃ |
---|---|---|---|---|
雨田 | 881 | 1023 | 1041 | 1063 |
转龙湾 | 1083 | 1120 | 1129 | 1163 |
红沙泉 | 1096 | 1107 | 1109 | 1114 |
沙尔湖 | 1193 | 1242 | 1247 | 1255 |
神府 | 1168 | 1173 | 1176 | 1184 |
神火 | 1204 | 1229 | 1231 | 1236 |
将军庙 | 1156 | 1171 | 1185 | 1195 |
表3 实验所用煤灰的熔点
Table 3 Ash fusion temperatures (AFTs) of coal ashes used in this study
煤灰 | DT/℃ | ST/℃ | HT/℃ | FT/℃ |
---|---|---|---|---|
雨田 | 881 | 1023 | 1041 | 1063 |
转龙湾 | 1083 | 1120 | 1129 | 1163 |
红沙泉 | 1096 | 1107 | 1109 | 1114 |
沙尔湖 | 1193 | 1242 | 1247 | 1255 |
神府 | 1168 | 1173 | 1176 | 1184 |
神火 | 1204 | 1229 | 1231 | 1236 |
将军庙 | 1156 | 1171 | 1185 | 1195 |
1 | 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
2 | Wang P, Massoudi M. Slag behavior in gasifiers (Part Ⅰ): Influence of coal properties and gasification conditions[J]. Energies, 2013, 6(2): 784-806. |
3 | 周志杰, 李德侠, 刘霞, 等. 煤灰熔融黏温特性及对气流床气化的适应性[J]. 化工学报, 2012, 63(10): 3243-3254. |
Zhou Z J, Li D X, Liu X, et al. Characteristic of cohesiveness-temperature of coal molten ash and its adaptability to entrained flow gasifier[J]. CIESC Journal, 2012, 63(10): 3243-3254. | |
4 | 白进, 孔令学, 李怀柱, 等. 山西典型无烟煤灰流动性的调控[J]. 燃料化学学报, 2013, 41(7): 805-813. |
Bai J, Kong L X, Li H Z, et al. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 805-813. | |
5 | Wu G X, Yazhenskikh E, Hack K, et al. Viscosity model for oxide melts relevant to fuel slags(Part 2): The system SiO2-Al2O3-CaO-MgO-Na2O-K2O[J]. Fuel Processing Technology, 2015, 138: 520-533. |
6 | Song W J, Tang L H, Zhu X D, et al. Flow properties and rheology of slag from coal gasification[J]. Fuel, 2010, 89(7): 1709-1715. |
7 | Schwitalla D H, Bronsch A M, Klinger M, et al. Analysis of solid phase formation and its impact on slag rheology[J]. Fuel, 2017, 203: 932-941. |
8 | Xuan W W, Whitty K J, Guan Q L, et al. Influence of Fe2O3 and atmosphere on crystallization characteristics of synthetic coal slags[J]. Energy & Fuels, 2015, 29(1): 405-412. |
9 | Xuan W W, Wang Q, Zhang J S, et al. Influence of silica and alumina (SiO2 + Al2O3) on crystallization characteristics of synthetic coal slags[J]. Fuel, 2017, 189: 39-45. |
10 | Ilyushechkin A Y, Hla S S, Roberts D G, et al. The effect of solids and phase compositions on viscosity behaviour and TCV of slags from Australian bituminous coals[J]. Journal of Non-Crystalline Solids, 2011, 357(3): 893-902. |
11 | Kim H, Matsuura H, Tsukihashi F, et al. Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate-based slags containing 10 mass pct MgO[J]. Metallurgical and Materials Transactions B, 2013, 44(1): 5-12. |
12 | Li X M, Zhi L F, He C, et al. The factors on metallic iron crystallization from slag of direct coal liquefaction residue SiO2-Al2O3-Fe2O3-CaO-MgO-TiO2-Na2O-K2O system in the entrained flow gasification condition[J]. Fuel, 2019, 246: 417-424. |
13 | Liu X, Yu G S, Xu J L, et al. Viscosity fluctuation behaviors of coal ash slags with high content of calcium and low content of silicon[J]. Fuel Processing Technology, 2017, 158: 115-122. |
14 | Ma Y S, Wu G X, Guo Q H, et al. Investigation of fluctuation behavior in viscosity of coal slags used in entrained-flow gasifiers[J]. Fuel Processing Technology, 2018, 181: 133-141. |
15 | Browning G J, Bryant G W, Hurst H J, et al. An empirical method for the prediction of coal ash slag viscosity[J]. Energy & Fuels, 2003, 17(3): 731-737. |
16 | Urbain G, Cambier F, Deletter M, et al. Viscosity of silicate melts[J]. Transactions and Journal of the British Ceramic Society, 1981, 80(4): 139-141. |
17 | Song W J, Dong Y H, Wu Y Q, et al. Prediction of temperature of critical viscosity for coal ash slag[J]. AIChE Journal, 2011, 57(10): 2921-2925. |
18 | Hurst H J, Novak F, Patterson J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999, 78(4): 439-444. |
19 | Hurst H J, Patterson J H, Quintanar A. Viscosity measurements and empirical predictions for some model gasifier slags(Ⅱ)[J]. Fuel, 2000, 79(14): 1797-1799. |
20 | Duchesne M A, Macchi A, Lu D Y, et al. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions[J]. Fuel Processing Technology, 2010, 91(8): 831-836. |
21 | Duchesne M A, Bronsch A M, Hughes R W, et al. Slag viscosity modeling toolbox[J]. Fuel, 2013, 114: 38-43. |
22 | Kong L X, Bai J, Li W, et al. The internal and external factor on coal ash slag viscosity at high temperatures(Part 2): Effect of residual carbon on slag viscosity[J]. Fuel, 2015, 158: 976-982. |
23 | Sun Y Q, Shen H W, Wang H, et al. Experimental investigation and modeling of cooling processes of high temperature slags[J]. Energy, 2014, 76: 761-767. |
24 | Duan W J, Gao Y K, Yu Q B, et al. Numerical simulation of coal gasification in molten slag: gas-liquid interaction characteristic[J]. Energy, 2019, 183: 1233-1243. |
25 | Yuan H P, Liang Q F, Gong X. Crystallization of coal ash slags at high temperatures and effects on the viscosity[J]. Energy & Fuels, 2012, 26(6): 3717-3722. |
26 | Einstein A. A new determination of molecular dimensions[J]. Ann. Phys., 1906, 19: 289-306. |
27 | Einstein A. Berichtigung zu meiner Arbeit:“Eine neue Bestimmung der Moleküldimensionen”[J]. Annalen Der Physik, 1911, 339(3): 591-592. |
28 | Roscoe R. The viscosity of suspensions of rigid spheres[J]. British Journal of Applied Physics, 1952, 3(8): 267-269. |
29 | Batchelor G K. Sedimentation in a dilute polydisperse system of interacting spheres (Part 1): General theory[J]. Journal of Fluid Mechanics, 1982, 119: 379-408. |
30 | Maron S H, Pierce P E. Application of ree-eyring generalized flow theory to suspensions of spherical particles[J]. Journal of Colloid Science, 1956, 11(1): 80-95. |
31 | Krieger I M, Dougherty T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of the Society of Rheology, 1959, 3(1): 137-152. |
32 | Chong J S, Christiansen E B, Baer A D. Rheology of concentrated suspensions[J]. Journal of Applied Polymer Science, 1971, 15(8): 2007-2021. |
33 | Moitra P, Gonnermann H M. Effects of crystal shape- and size-modality on magma rheology[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(1): 1-26. |
34 | Zhou J, Shen Z J, Liang Q F, et al. A new prediction method for the viscosity of the molten coal slag (Part 1): The effect of particle morphology on the suspension viscosity[J]. Fuel, 2018, 220: 296-302. |
35 | Zhou J, Shen Z J, Liang Q F, et al. A new prediction method for the viscosity of the molten coal slag (Part 2): The viscosity model of crystalline slag[J]. Fuel, 2018, 220: 233-239. |
36 | Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010—2016[J]. Calphad, 2016, 54: 35-53. |
37 | Mindat.org. Database[DB/OL]. . |
38 | Arman, Okada A, Takebe H. Density measurements of gasified coal and synthesized slag melts for next-generation IGCC[J]. Fuel, 2016, 182: 304-313. |
39 | Xuan W W, Whitty K J, Guan Q L, et al. Influence of CaO on crystallization characteristics of synthetic coal slags[J]. Energy & Fuels, 2014, 28(10): 6627-6634. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[8] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[14] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[15] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||